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Induced pluripotent stem cells (iPSCs) are somatic cells that have been reprogrammed to a pluripotent state via
introduction of defined transcription factors. iPSCs are a valuable resource for regenerative medicine, but
whether iPSCs are identical to embryonic stem cells (ESCs) remains unclear. In this study, we performed
comparative proteomic analyses of human somatic cells [human newborn foreskin fibroblasts (hFFs)], human
iPSCs (hiPSCs) derived from hFFs, and H9 human ESCs (hESCs). We reprogrammed hFFs to a pluripotent state
using 4 core transcription factors: Oct4 (O), Sox2 (S), Klf4 (K), and c-Myc (M). The proteome of hiPSCs induced
by 4 core transcription factors was relatively similar to that of hESCs. However, several proteins, including
dUTPase, GAPDH, and FUSE binding protein 3, were differentially expressed between hESCs and hiPSCs,
implying that hiPSCs are not identical to hESCs at the proteomic level. The proteomes of iPSCs induced by
introducing 3, 5, or 6 transcription factors were also analyzed. Our proteomic profiles provide valuable insight
into the factors that contribute to the similarities and differences between hESCs and hiPSCs and the mecha-

nisms of reprogramming.

Introduction

INDUCED PLURIPOTENT STEM CELLS (iPSCs) are somatic cells
that have been reprogrammed to a pluripotent state. In
2006, Yamanaka and coworkers reported that mouse embry-
onic fibroblasts (MEFs) could be reprogrammed to a plurip-
otent state by introducing 4 transcription factors Oct4, Sox3,
Klf4, and c-Myc via retroviral delivery [1]. These cells exhibit
many of the features that are characteristic of embryonic stem
cells (ESCs), such as testing positive for alkaline phosphatase
(ALP) and ES cell-specific surface markers, expressing Nanog,
differentiating into all 3 germ layers, exhibiting transcrip-
tional and epigenetic similarities with ESCs, and forming
teratomas in immunodeficient mice [2-6]. Since then, iPSC
technology has been received with great excitement in the
medical world because of the potential to generate patient-
derived pluripotent stem cells as sources for cell therapies for
a variety of disorders, including many degenerative diseases.

Although iPSCs possess enormous therapeutic potential,
there are several hurdles that must be overcome before iPSCs
can be used for patient-specific cell therapies, including the
tumorigenic potential of c-Myec, the use of retroviral infection,
and the low efficiency of iPSC derivation [7,8]. The critical
issue is whether iPSCs are identical to ESCs. It is generally
accepted that iPSCs closely resemble ESCs morphologically,

molecularly, and developmentally [9-12]. Similarities between
iPSCs and ESCs have been identified by microarray studies,
high-throughput sequencing, and analysis of DNA methyla-
tion status. However, there have been no detailed reports
about comparative analyses at the proteomic level [13].

Proteomics can provide a global, systematic, and com-
prehensive approach to the identification of the biochemical
processes, pathways, and networks involved in various
physiological states at the protein level. Although nongel-
based approaches, such as stable isotope labeling with amino
acids in cell culture (SILAC) and surface-enhanced laser
desorption/ionization (SELDI), have been used mainly for
quantitative proteomic analysis [14-16], 2-dimensional elec-
trophoresis (2-DE) coupled with mass spectrometry (MS) is a
well-established and reliable method for investigation of
differential protein expression.

The purpose of this study was to perform a detailed anal-
ysis of the proteomes of somatic donor cells, human iPSCs
(hiPSCs) derived from the corresponding somatic cells, and
human ESCs (hESCs) to validate the usefulness of hiPSCs at
the proteomic level. From the data of comparative proteomic
analysis, we suggest that hiPSCs and hESCs are very similar
at the proteomic level, strengthening the usefulness of hiPSCs.
However, several proteins with differential expression pattern
between hiPSCs and hESCs were detected.
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Materials and Methods
Generation of hiPSCs

Human newborn foreskin fibroblasts (hFFs; CRL-2097;
ATCC) were grown in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine serum (Invitrogen),
1% nonessential amino acids (NEAA; Invitrogen), 1mM
L-glutamine (Invitrogen), and 0.1mM B-mercaptoethanol
(Sigma, St. Louis, MO). For reprogramming, hFFs (1x10°
cells per well) were transduced with pMX-based retroviruses
encoding human Oct4, Sox2, K1f4, and c-Myc (Addgene, Inc.)
in 6-well culture dishes. Five days after transduction, the
hFFs were replated on gelatin-coated 6-well dishes (5-6x 10*
cells per well) that had been preplated with MEF feeder cells.
On the following day, the medium was replaced with hESC
medium supplemented with 10ng/mL basic fibroblast
growth factor (bFGF). The medium was changed every other
day. Colonies that exhibited an hES-like morphology were
picked 20-23 days after transduction and transferred to 12-
well dishes that had been preplated with MEF feeder cells.
Selected hiPSC colonies were expanded under standard
hESC culture conditions and used for further analyses.

Maintenance of hiPSCs and hESCs

Undifferentiated hESCs (H9; WiCell Res. Ins.) and estab-
lished hiPSCs were routinely maintained on y-irradiated
MEFs in hESC culture medium consisting of 80% DMEM/
F12 medium, 20% knockout serum replacement (Invitrogen),
1% nonessential amino acids (NEAA; Invitrogen), 1mM L-
glutamine (Invitrogen), 0.1 mM B-mercaptoethanol (Sigma),
and 6ng/mL bFGF (Invitrogen). The cells were passaged
once per week using mechanical or collagenase-based en-
zymatic methods as previously described [17].

ALP staining

ALP staining was performed using a commercially avail-
able ALP kit according to the manufacturer’s instructions
(Sigma). Images of ALP-positive cells were recorded using
an HP Scanjet G4010. Bright-field images were obtained us-
ing an Olympus microscope (IX51; Olympus).

Polymerase chain reaction analysis

Total RNA was isolated from cells using the RNeasy Mini
Kit (Qiagen) and reverse-transcribed using the SuperScript
First-strand Synthesis System Kit (Invitrogen) according to
the manufacturers’ protocols. Semiquantitative reverse trans-
criptase (RT)-polymerase chain reaction (PCR) was performed
using the Platinum Taq SuperMix kit (Invitrogen) under the
following conditions: 3 min at 94°C, followed by 30 cycles of
30s at 94°C, 30s at 60°C, and 30s at 72°C, and a final ex-
tension for 10min at 72°C. Glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) was used as an endogenous control.
Quantitative real-time PCR was performed using the Power
SYBR Green PCR Master Mix (Applied Biosystems) and the
ABI 7500 Real-Time PCR System (Applied Biosystems). After
activating Taq polymerase at 95°C for 15min, the reactions
were denatured at 95°C for 15s and annealed and elongated
at 60°C for 1 min; this process was repeated for 50 cycles. The
PCR products were separated using a 1.5% agarose gel con-
taining ethidium bromide and visualized with a Gel Doc EQ
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system (Bio-Rad). All experiments were performed in tripli-
cate, and the cycle threshold (CT) value for each target gene
was determined using the software provided by the manu-
facturer and normalized to the expression level of GAPDH.
The primer sequences used in the present study are shown in
Supplementary Table S1 (Supplementary Data are available
online at www liebertonline.com/scd).

Immunocytochemistry

Cells that had been cultured on gelatin-coated 4-well Lab-
Tek chamber slides (Nunc) were fixed with 4% paraformal-
dehyde, permeabilized in phosphate-buffered saline (PBS)/
0.2% bovine serum albumin (BSA)/0.1% Triton X-100, and
blocked with 4% normal donkey serum (Molecular Probes)
in PBS/0.2% BSA for 1h at room temperature. After block-
ing, the cells were incubated with the respective primary
antibodies [anti-Oct4 (Santa Cruz Biotechnology), anti-
Nanog, anti-SSEA4, and anti-Tral-60 (R&D Systems)] diluted
in PBS/0.2% BSA. After washing, the cells were incubated
with FITC- or Alexa 594-conjugated secondary antibodies
(Invitrogen) in PBS/0.2% BSA for 1h at room temperature.
The chamber slides were analyzed using an Olympus micro-
scope or an Axiovert 200M microscope (Carl Zeiss).

Karyotype analysis

Long-term-maintained hEBs were processed for chromo-
somal G-band analysis by GenDix Inc. A representative im-
age was captured by ChIPS-Karyo (Chromosome Image
Processing System; GenDix, Inc.).

Isoelectric focusing and 2-D gel electrophoresis

The cell lysates were obtained from hFFs (passage 3), hiPSC
lines (passages 15-20), and H9 hESCs (passage 33). Cell ly-
sates (150 pug of protein) were mixed with rehydration buffer
[9M urea, 4% 3-[(3-cholamidopropyl)-dimethylammonio]-1-
propane sulfonate (CHAPS), 2M thiourea, 40mM di-
thiothreitol (DTT), and 2% immobilized pH gradient (IPG)
buffer]. Protein samples were directly applied to IPG strips (pH
3-10, 13cm) and rehydrated for 14h at room temperature.
Next, isoelectric focusing was performed using the Multiphor II
(GE Healthcare) apparatus. The initial voltage was maintained
at 300 V for 1 min and then linearly increased from 300 to 3,500
V within 1.5h. The voltage was maintained at 3,500 V for 8 h.
The plate temperature was kept constant at 25°C during iso-
electric focusing. The focused IPG strips were briefly equili-
brated for 15 min with equilibration solution [50 mM Tris-HCl
(pH 8.8), 6 M urea, 2% sodium dodecyl sulfate (SDS), and 30%
glycerol] containing 1% DTT, followed by equilibration for
15min in the same solution containing 5% iodoacetamide in-
stead of DTT. The equilibrated strips were directly loaded
onto 13% polyacrylamide gels (150 x 150 x 1.5mm?) or stored
at —80°C until use in subsequent experiment. Polyacrylamide
gels loaded with IPG strips were run at a constant current of 20
mA per gel with the PROTEAN II Xi/ XL system (Bio-Rad).

Staining and image analysis

After electrophoresis, the gels were fixed, and the protein
spots were visualized by silver staining (PlusOne Silver
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FIG. 1. Characterization of hiPSCs
derived from hFFs. (A) Morphology
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Staining Kit; GE Healthcare). The 2-DE images were scanned
and processed with Progenesis SameSpots v3.0 software
(Nonlinear Dynamics Ltd.). Spot volumes were normalized
based on the total spot volume of each gel. Protein spot intensity
was defined as the normalized spot volume, that is, the ratio of
the single spot volume to the total of the spot volumes on the 2-
DE gel (total spot normalization). Computer analysis facilitated
the automatic detection and quantification of protein spots and
matches among gels of somatic cells, hiPSCs, and hESCs. Spots
displaying reliable and significant differences (greater than 2.0-
fold, P <0.05) were selected for MS analysis.

In-gel digestion and identification by liquid
chromatography—MS/MS

Spots of interest were manually excised from 2-DE gels and
destained with chemical reducers to remove the silver [18-20].

Briefly, 50-100 mL of the freshly prepared reducing solution
(1:1 mixture of 30mM potassium ferricyanide and 100 mM
sodium thiosulfate) was added to the gel plugs and mixed.
After the brown color disappeared, the gel plugs were rinsed
with water and incubated in 200 mM ammonium bicarbonate
for 20min. Subsequently, the gel plugs were cut into small
pieces, washed with water, and dehydrated repeatedly with
acetonitrile (ACN) until the pieces appeared opaque and
white. Next, the gel pieces were dried in a vacuum centrifuge
for 30min, and the proteins were digested with 20ng/mL of
sequencing grade-modified trypsin (Promega) for 16-24h at
37°C. Digested peptides were extracted with extraction solu-
tion (50% ACN and 5% trifluoroacetic acid [TFA]), and the
extracted peptides were dried using a vacuum drier. Samples
were then subjected to MS analysis.

Peptides were analyzed using a Synapt High Definition Mass
Spectrometer (Waters) equipped with a nanoACQUITY Ultra
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Performance LC system (Waters). A volume of 2pL of the
peptide solution was injected onto a 75mx100mm Atlantis
dC18 column (Waters). Solvent A consisted of 0.1% formic acid
in water, and Solvent B consisted of 0.1% formic acid in ACN.
Peptides were initially separated using 100 min gradients and
electrosprayed into the mass spectrometer (fitted with a nano-
LockSpray source) at a flow rate of 300 nL/min. Mass spectra
were acquired from m/z 300-1,600 for 1s, followed by 4 data-
dependent MS/MS scans from m/z 50-1,900 for 1s each. The
collision energy used to perform MS/MS was varied according
to the mass and charge state of the eluting peptide. (Glul)-
Fibrinopeptide B was infused at a rate of 350nL/min, and an
MS scan was acquired for 1s every 30s throughout the run. A
database search was performed with MASCOT (Matrix Sci-
ence) using the following parameters: NCBInr.08.03.26 data-
base, Homo sapiens species, and maximum number of missed
cleavages by trypsin set to 1. The mass tolerance ranged

from+50 to+100 ppm. The peptide modification allowed was
carbamidomethylation in the fixed modification mode.

Target validation using western blot analysis

Protein samples (20 pg) were separated on a 13% SDS—poly-
acrylamide gel electrophoresis gel and transferred to a nitrocel-
lulose membrane using standard procedures. The membrane
was blocked with 5% (v/v) skim milk in TBS-T buffer [20 mM
Tris-HCl (pH 7.6), 0.1369 M NaCl, and 0.1% Triton X-100] and
then incubated with the primary antibody for 12 h on a rocking
platform at 4°C. The membrane was then washed 3 times
with TBS-T buffer for 15 min and incubated with 5% skim milk in
TBS-T buffer containing horseradish peroxidase-conjugated
secondary antibody (diluted to 1:3,000) for 1h. The hybridized
membrane was washed in TBS-T buffer and visualized using a
chemiluminescent ECL detection kit (GE Healthcare).
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Bioinformatic data analysis

Differentially expressed proteins were evaluated by In-
genuity Pathway Analysis (IPA; Ingenuity System). IPA is a
software application that enables the identification of the
biological mechanisms, pathways, and functions matching a
particular dataset of proteins. IPA is based on a database
obtained by abstracting and interconnecting a large fraction
of the existing biomedical literature according to a strict al-
gorithm. This database integrates protein functions, cellular
localizations, small molecules, and disease interrelation-
ships. The networks are displayed graphically as nodes, re-
presenting individual proteins, and edges, representing
the biological relationships between nodes. Networks are
ordered by score and optimized to include as many differ-
entially expressed proteins as possible. A P score [ie, —log(P
value)] for each possible network is computed. Therefore,
networks with scores of 2 or higher have at least 99% con-
fidence of having not been generated by random chance
alone.

Statistical analysis

Experimental differences were tested for statistical signifi-
cance using analysis of variance and Student’s t-test. P values
less than 0.05 were regarded as statistically significant.

Results and Discussion
Generation of hiPSCs

The hiPSCs used in this study were derived from hFFs by
retroviral overexpression of Oct4 (O), Sox2 (S), KlIf4 (K), and
c-Myc (M). Reprogrammed hiPSCs exhibited an hESC-like
morphology and strong ALP activity (Fig. 1A). hiPSCs were
positive for Oct4, Nanog, SSEA-3, and Tra-1-61 proteins, as
determined by immunohistochemistry (Fig. 1B). Quantitative
real-time RT-PCR analysis showed that the expression of
pluripotency markers, including Oct4, Sox2, Nanog, hTERT,
Rex1 and TDGF, were markedly increased relative to donor
somatic cells, which had pluripotency marker expression
levels that were comparable to those of H9 hESCs (Fig. 1C).
Semiquantitative RT-PCR analysis indicated that the hiPSCs
silenced the expression of the retroviral transgenes (Oct4,
Sox2, K1f4, and c-Myc) (Fig. 1C). The pluripotency of hiPSCs
induced by 4 core transcription factors (OSKM-hiPSCs) was
further confirmed by in vivo teratoma formation assays. As
shown in Fig. 1D, the teratomas contained well-defined
structures arising from all 3 germ layers. In addition, the
hiPSCs retained a normal karyotype during in vitro culture
(Fig. 1F).

Proteomic analysis of donor cells, hiPSCs,
and hESCs by 2-DE

To establish the proteomic profiles of hFFs, OSKM-
derived hiPSCs, and hESCs, protein lysates from these cells
were separated by 2-DE (Fig. 2). Experiments were per-
formed in triplicate. More than 1,800 protein spots were
detected on gels after silver staining, automatic spot de-
tection, background subtraction, and volume normaliza-
tion. In 3 sets of experiments, protein spots displaying
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significant changes (greater than 2-fold changes when
comparing somatic fibroblast cells to hESCs, somatic fi-
broblast cells to hiPSCs, and hiPSCs to hESCs) were scored
and identified (Supplementary Fig. S1 and Table 1). In total,
65 spots were scored. Forty-three of which exhibited
changes between the hFF donor cells and OSKM-hiPSCs
(Figs. 2 and 3A), demonstrating that the proteomic pattern
of the donor cells could be altered by introducing 4-core
pluripotency transcription factors. Among the 43 spots, 18
also changed in the same pattern in hESCs. For spot no. 299
(identified as serpin peptidase inhibitor, clade B, member 9
by MS analysis), decreased expression was detected in
OSKM-hiPSCs, whereas increased expression was detected in
hESCs. Spots showing differential expression patterns be-
tween hESCs and OSKM-hiPSCs were also detected (Figs. 2
and 3A). Of 15 spots showing differential expression pat-
terns, 7 spots were increased and 8 spots were decreased in
OSKM-hiPSCs compared with hESCs. In addition to OSKM-
hiPSCs, we further analyzed the proteomic profiles of
hiPSCs induced by 3 factors (Oct4, Sox2, and Klf4), 5 fac-
tors (Oct4, Sox2, KIf4, c-Myc, and SV40 large T antigen),
and 6 factors (Oct4, Sox2, Klf4, c-Myc, SV40 large T anti-
gen, and hTERT) (Fig. 2). The global expression intensity
map generated from the proteomic data clearly demon-
strated that hiPSCs induced by the introduction of 5 factors
possess the proteomic pattern closest to that of hESCs (Fig.
3B). On the other hand, OSKM-hiPSCs showed the pro-
teomic pattern with lowest similarity to hESCs. iPSCs have
been reportedly obtained from primary skin fibroblasts
derived from a healthy adult donor via the aid of 2 addi-
tional factors, hTERT and SV40 large T antigen [10].
However, the detailed roles of hTERT (the catalytic sub-
unit of human telomerase) and SV40 large T antigen in
reprogramming remain unclear. Thus, identifying pro-
teins that are differentially expressed in hiPSCs that are
induced by 5 and 6 factors when compared with other
hiPSCs, donor cells, and hESCs would be valuable in un-
derstanding the detailed roles played by hTERT and SV40
large T antigen in the generation of iPSCs (Table 2). For
example, like H9 ESCs, Far upstream element binding
protein 3 (FUBP-3; spot no. 1257) and Cu/Zn-superoxide
dismutase (spot no. 416) are highly expressed (>2-fold)
in only hiPSCs induced by the introduction of 6 factors
among iPSCs. This may be caused by the introduction of
hTERT.

Identification and classification of differentially
expressed proteins by liquid chromotography—MS/MS

The spots with differential expression patterns among
hFFs, hESCs, and OSKM-hiPSCs were identified. A total of
65 proteins were identified by MS analysis (Table 1). The
proteins identified were classified according to their biolog-
ical process, molecular function, and cellular location (Fig.
3C). The proteins were classified into various functional
groups, implying that significant changes occur during re-
programming and many proteins may contribute to the
pluripotency of hESCs and hiPSCs.

Among the identified proteins, a number of proteasome
subunit proteins were differentially expressed. The pro-
teasome has been implicated in the dynamic control of
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= factor binding to transcriptionally active promoters [21].
Ju Cocoeomme eo Tissue-specific gene loci are maintained in a state that is
R R NNFOROF— O . o .
et NOANND — S~ gD competent for future expression but remains inactive at the
S T e amet e pluripotent stage. At that stage, stable binding of tran-
§<> scription factors and RNA polymerase II to specific se-
S y e e quence elements is inhibited by the proteasome [22]. The
S = . [
= =0 AT LSy oS8 uPregulatlon of severz.ﬂ proteasome subunits in hESCs and
2 L Ao === = hiPSCs compared with donor cells would therefore be
- expected, and this observation further supports our ex-
b e > bt > =y perimental design in profiling the proteomes of hFFs,
25| gLegnwng =2 hESCs, and hiPSCs.
&3 R R NN IRl I I N
) Validation of proteins by western blot analysis
S~
§ R 2ENEIBEDS B& Western blotting was used to validate the 2-DE results and
S assess the expression changes of several proteins that
= showed differential patterns (Fig. 4). With the exception of
3 § RxI2RBES g8 molecular chaperones and proteins involved in the cyto-
g S SO AARDBAD O A e .
S @ — skeleton, we tested all possible identified proteins by western
blot analysis using commercially available antibodies. Gen-
= ©n .
=R erally, the western blot results correlated well with the 2-DE
S = N oo e HW  MIN .
=5 — - data (Table 1 and Fig. 4).
== Among the identified proteins, heterochromatin protein
1-p (HP1P) was significantly upregulated in hESCs and
" .5 . hiPSCs, compared with donor cells (Fig. 4). HP1p is a highly
& @S = conserved nonhistone protein and a member of the hetero-
8 o N > . . . . .
. i< g g S chromatin protein family. The N-terminal chromodomain
N & ‘7 B0 A= of HP1B can bind histone proteins, and the C-terminal
=) = = S 5|3 o : o
Z -2 S .9 g %2 c g ; chromo shadow-domain is involved in heterodimerization
bt - n . . . . . .
= Q2 @ ks g8 g z |2 and interactions with a variety of chromatin-associated
8 & qé %0 ‘ig § £ & é nonhistone proteins. This protein plays a crucial role in the
~ g % 22 ., i & é " g £ epigenetic regulation of chromatin structure and DNA re-
; g‘; 8 § g% % ‘:>\ Eg e pair [23,24]. A variety of epigenetic changes take place
= 23 e¢Ec8Es S§| =2 during the reprogramming process [25,26]. The differential
= CEESY9_egfE gg£ = . . :
P :2 @ 3b>g35C =9 s expression pattern of HP1p in our experiments suggests that
ARERBOOUR< U E HP1p may be involved in chromatin remodeling during
[T E reprogramming.
ﬁ % % ESCs and iPSCs have lower levels of mitochondrial
E g = mass and oxidative phosphorylation and higher levels of
¥ ¥~ ""E Nt~ *@‘ lactate production than mature or differentiated cells. Fur-
_ﬁ; < “?} E ’c«?i 3 Eﬂzl Té ther, hypoxia significantly enhances reprogramming effi-
58 = ’\91 é -7 £ 5 ciency [27], implying that ESCs and iPSCs preferentially use
g ﬁz %5‘ Ed g £ 9 % p nonoxidative glycolysis as a main energy source [28-30]. In
S SN 6 oo o8 ZF | % our experiments, several glycolytic enzymes, including
S agT oS Do =3 | O . .
-8 Ase~SgRE Y83 GAPDH, phosphoglycerate kinase 1, triose phosphate
8 R3 "é.‘.&-’ g€ %3 g5 | <2 . 4 .
IS £E2F % ge 22| ¢ isomerase 1, and lactate dehydrogenase B, were differen-
~ é 25 g _g o= e S8 tially expressed in hESCs and hiPSCs relative to hFFs, in-
L2 E»iﬁ s %o E E § dicating that glycolytic metabolism is the main energy
8% g \%% g z &65 S £ generation system in hESCs and hiPSCs. Notably, a more
e é i:@ - 28 % S E 2 g = dramatic increase in GAPDH was detected in OSKM-
&5 E\TE g _5 % = g < §* 5t E hiPSCs than in hESCs. GAPDH is a multifunctional protein
= e ~ . . . . .
S &S .‘_ﬁ § g & 9-8 o | E with multiple intracellular localizations and plays key roles
200 AEEE EA = in diverse cellular processes independent of its traditional
S - o ] role in glycolysis; these processes include DNA repair,
i s SRLYRE L0 E membrane fusion and transport, cytoskeleta'l dynamics,
.S NBIIERSKXE Rg | = and cell death [31-33]. Therefore, the detailed role of
2 SEBIRIZE BB F GAPDH in the reprogramming process is likely to be
S SO BFARER AA| B prog & P y
< BbEh B0 B0 B B0 B0 ED  BbBb | B complex.
. £ Decreased expression of nucleoporin p54 (Nup54) was
> 5 detected in both hESCs and hiPSCs compared with hFFs.
8 BRI EDE R R Developmental signal transduction involves nucleocyto-
S AN BnaIFFHF FF .
n Hre A A plasmic transport and occurs through nuclear pore
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"4 FactorhiPsc

FIG. 3. Bioinformatic analysis of B
the identified proteins. (A) Venn
diagrams showing the degree of
overlap of differentially expressed
proteins between hESCs and

OSKM-hiPSCs (4 Factor iPSC). Se-
venteen proteins were common
between H9 hESCs and hiPSCs
compared with somatic donor cells.
In addition, 15 differentially ex-
pressed proteins were detected be-
tween H9 hESCs and hiPSCs. The
identified proteins are listed in Ta-
bles 1 and 2. (B) Heat map and hi-
erarchical  clustering of  the
proteome across samples from so-
matic cells, hESCs, and hiPSCs. (C)
Functional classification of the
identified proteins according to
their biological process, molecular
function, and cellular location.
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complexes. A nuclear pore complex consists of approxi-
mately 30 distinct proteins (nucleoporins or Nups). Recent
studies have shown distinct roles for different FG-Nups,
which have repetitive stretches of Phe-Gly residues [34,35].
Further, it was reported that the composition of the nuclear

pore complex is also important during cell differentiation in
the developing mouse embryo [36]. In conjunction with our
proteomic data, these reports suggest that the composition
of the nuclear pore complex may be critical to the repro-
gramming process. More extensive experiments will be
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necessary to elucidate the involvement mechanism of Nups
in reprogramming.

The protein SET (also known as protein phosphatase 2A
inhibitor) was significantly increased in both hESCs and
hiPSCs (Fig. 4 and Table 2). SET binds to histones as a subunit
of the INHAT (inhibitor of acetyltransferase) complex [37].
The binding of the INHAT complex to histones suppresses
their acetylation and thereby induces transcriptional repres-
sion. The overexpression of SET inhibits DNA demethylation,
resulting in gene silencing [38]. Additionally, SET binds and
blocks the DNase activity of NM23-H1, a tumor metastasis
suppressor [38]. SET also plays a role in hematopoietic dif-
ferentiation [39]. The dramatically increased levels of SET in

hFF  H9 ESC 4F hiPSC hFF  H3 ESC 4F hiPSC

VAT1

|-— ——| HP1p

PTGES3 PSMA1

1I

|-—-| CASP 3 PRDX 4
[—— 11 e

ARL 3
[——— PS04

puT

ﬂ

MRPS 22

SERPINB 9
—— - T
—— E) PSMAT
i 4
NME 1
CAPZB
-

FIG. 4. Validation of 2-DE results by western blot analysis.
Western blot confirmation of the expression patterns of het-
erochromatin protein 1p (HP1p), prostaglandin E synthase 3
(PTGES3), ionized calcium binding adapter molecule 2 iso-
form 1 (AIF1L), caspase 3 preproprotein (CASP3), proteasome
beta 3 subunit (PSMB3), 26S proteasome-associated padl
homolog (PSMD14), mitochondrial ribosomal protein S22
(MRPS22), SET, phosphoglycerate kinase 1 (PGK1), nucleo-
porin 54 kDa (NUP54), argininosuccinate synthetase 1 (ASS1),
transgelin 2 (TAGLN2), cofilin 1 (CFL1), y subunit of CCT
chaperonin (CCT3), vesicle amine transport protein 1 (VAT1),
proteasome ol subunit isoform 2 (PSMA1), UMP synthase
(UMPS), thioredoxin peroxidase (PRDX4), 26S proteasome
subunit p45 (PSMC5), ADP-ribosylation factor-like 3 (ARL3),
deoxyuridine 5’-triphosphate nucleotidohydrolase (DUT),
serpin peptidase inhibitor, clade B, member 9 (SERPINBY),
proteasome subunit HSPC (PSMA?7), nonmetastatic cells 1
protein (NME1), and F-actin capping protein B subunit
(CAPZB). B-Actin was employed as a loading control.
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hESCs and hiPSCs may reflect its role in reprogramming,
although the details of role are unknown.

Protein network analysis of identified proteins

The proteins displaying patterns of differential expres-
sion among hFFS, hESCs, and OSKM-hiPSCs were ana-
lyzed in silico using the IPA software [40,41]. Data from the
comparison of donor cells and hESCs are represented in
Fig. 5A, and data from the comparison of donor cells and
OSKM-hiPSCs are depicted in Fig. 5B. There are similarities
between hESCs and OSKM-hiPSCs, but subtle differences
were also detected (Fig. 5C), providing insight into the re-
programming process and differences between hESCs and
OSKM-hiPSCs.

FUBPs bind to an upstream element of the c-myc promoter
and regulate the level of c-myc mRNA [42,43]. The c-Myc
protein is part of the basic helix-loop-helix leucine zipper
family of transcription factors and is involved in cell growth,
proliferation, differentiation, and apoptosis [42]. Further, c-
Myc participates in the dedifferentiation process and is
widely used as a key reprogramming factor [1-5]. Omission
of c-Myc during reprogramming significantly lengthens the
time required for reprogramming and dramatically decreases
reprogramming efficiency [44]. However, c-Myc induces tu-
mor formation in half of the chimeric mice generated from
iPSCs [1,45]. Therefore, the alternative gene of c-myc is highly
needed to overcome these obstacles of c-Myc during repro-
gramming process. In our proteomic analysis, 3 FUBP family
protein members were differentially expressed (Table 1).
FUBP-1 and FUBP-3 were significantly upregulated in hESCs
compared with somatic cells. On the other hand, increased
FUBP-1 levels and decreased FUBP-2 levels were detected in
hiPSCs. Moreover, only FUBP-3 expression was significantly
enhanced in hiPSCs compared with hESCs (Fig. 5D). The
target genes of FUBPs are influenced by the absolute and
relative intranuclear stoichiometries of individual FUBPs
[46]. Therefore, it is estimated that absolute and relative
amount of FUBPs may also be important in the regulation of
c-Myc expression during the reprogramming process. In
consistent, expression of FUBP-1 mRNAs was upregulated
in pluripotent hESCs and hiPSCs compared with hFFs (Fig.
5E). Importantly, it was confirmed that the expression of
FUBP-1 proteins was notably increased in hFFs at 1 and 3
weeks after OSKM transduction (Fig. 5F). The result from
protein network analysis clearly showed differences in
FUBPs among hFFs, hESCs, and OSKM-hiPSCs (Fig. 5G).
Therefore, we suggest the possibility that FUBPs or FUBP-
upregulating molecule(s) may be used as reprogramming
factors.

Concluding Remarks

We performed a comparative proteome analysis of hESCs,
hiPSCs, and their corresponding donor cells (hFFs). Through
this approach, we identified many proteins that may be di-
rectly or indirectly involved in reprogramming. The identi-
fied proteins are involved in various biological processes,
including transcription cofactor activity, proteasome activa-
tor activity, lipid metabolic processes, cell redox homeosta-
sis, and nucleoside metabolic processes, indicating that
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significant physiological changes occur during reprogram- ine whether they can be effectively utilized to induce or
ming. Further, we identified several proteins with differen- regulate reprogramming at will. In combination with our
tial expression patterns between hESCs and hiPSCs. In future ~ proteomic analyses, further characterization of these proteins
studies, we will perform a detailed investigation of the roles  should provide valuable new insights into the mechanism of
of the identified proteins during reprogramming and exam- reprogramming.
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