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Phase diagram of graphene nanoribbons and band-gap bifurcation of Dirac fermions under
quantum confinement
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A p-T phase diagram of graphene nanoribbons (GNRs) terminated by hydrogen atoms is established based
on first-principles calculations, where the stable phase at standard conditions (25 ◦C and 1 bar) is found to be a
zigzag GNR (zzGNR). The stability of this new GNR is understood based on an electron-counting model, which
predicts semiconducting nonmagnetic zzGNRs. Quantum confinement of Dirac fermions in the stable zzGNRs is
found to be qualitatively different from that in ordinary semiconductors. Bifurcation of the band gap is predicted
to take place, leading to the formation of polymorphs with distinct band gaps but equal thermodynamic stability.
A tight-binding model analysis reveals the role of edge symmetry on the band-gap bifurcation.
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I. INTRODUCTION

Graphene, as a Dirac fermion system, possesses extremely
high carrier mobilities1 and has been envisaged as an electronic
material candidate for the postsilicon era.2 Perfect graphene,
however, is a semimetal with a zero electronic band gap. In this
regard, graphene nanoribbons (GNRs) have attracted consider-
able attention3–8 because they could be made semiconducting
with band gaps opened by the quantum confinement effect.
In recent years, a number of techniques have been developed
to produce GNRs.7–11 Prototypical electric-circuit elements
such as field-effect transistors based on GNRs have also been
demonstrated experimentally.6,12

The electronic properties of GNRs are governed by several
factors, such as chirality, ribbon width, and atomic structure at
the two edges. The effect of the chirality has been studied.3,4,13

An inverse dependence of the band gap on the ribbon width has
also been established.4 The understanding of the edge effects
has so far focused on the disorder at the edges.14–20 Such edge
disorder introduces localized gap states that dominate electron
transport in the GNRs. In the past several years, significant
progress has been made to produce higher-quality GNRs
by, e.g., solution-phase fabrication,8 bottom-up synthesis,9

carbon nanotube unzipping,10,11,21,22 Joule heating,23 and
nanowire-masked lithography.24 Atomically smooth edges
enable precise control on the electronic properties of GNRs for
nanoelectronics. Meanwhile, a new physics of Dirac fermions
under quantum confinement that are shadowed by the edge
disorder effects is expected to emerge in the GNRs with
atomically smooth edges.

In this paper, we address, by first-principles calculations,
two fundamental issues regarding GNRs: (1) the thermody-
namic phase diagram upon edge hydrogenation and (2) the
quantum confinement of Dirac fermions and its explicit edge
dependence. The first issue is important because for the
physical properties of a batch of GNRs thermodynamics is
expected to play an important role, whereas the second issue
is important because there is no a priori knowledge that

quantum confinement of Dirac fermions should obey the same
physics as that in ordinary semiconductors. Concerning issue
(1), we propose a new H-passivated pattern of the zigzag
(zz) GNRs. It changes the relative thermodynamic stability
between the armchair (ac) GNR and zzGNR known in the
literature,25 making the latter more stable under the standard
conditions (1 bar and 300 K). Concerning issue (2), we show
that quantum confinement of Dirac fermions, as demonstrated
in the stable zzGNR, is fundamentally different from that
in ordinary semiconductors. The symmetric band structure
between electrons and holes near the degenerate K point in the
Brillouin zone of the same atomic character, namely, carbon
π states, makes it possible to mix the electron and hole states
upon size confinement with little energy penalty. As such, two
sets of zzGNRs with equal stability but drastically different
band gaps emerge, with a nearly constant gap ratio of about
2.8. It suggests that uncertainty of the band gaps of zzGNRs
could be an intrinsic property of the Dirac fermions under
quantum confinement.

II. COMPUTATIONAL METHOD

Our first-principles calculations were based on spin-
polarized density functional theory with the Perdew-Burke-
Ernzerhof approximation26 to the exchange-correlation func-
tional. The core-valence interactions were described by the
projector augmented-wave potentials27 as implemented in the
VASP code.28 Plane waves with a kinetic energy cutoff of
544 eV were used as the basis set. The calculations were carried
out in periodic supercells, where the GNRs from neighboring
supercells were separated by at least 10 Å. All atoms were
relaxed until the forces were smaller than 0.01 eV/Å. The
length of the lattice vector, L, along the periodic direction was
optimized until the stress was smaller than 1 kbar. A 1 × 4 ×
1 (or 1 × 8 × 1 for a reduced cell) k-point set was used for
the Brillouin zone integration.
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FIG. 1. Phase diagram of hydrogen-passivated GNRs with both
zz and ac edges. The insets show the atomic structures of the
corresponding passivation patterns. The star marks the standard
atmospheric conditions (T = 300 K and P = 1 bar). The values
of μ∗

H2
in Eq. (2) at the phase boundaries are also given. L is the

length of the lattice vector.

III. PHASE DIAGARAM OF GRAPHENE NANORIBBONS

Figure 1 shows the calculated phase diagram of hydrogen-
passivated GNRs with either zz or ac edges. We compare the
thermodynamic stability of the various GNRs by their edge
energy,

�G = [EGNR − NCEC − NHμH]/2L, (1)

where EGNR is the total energy of a GNR, NC and NH are the
numbers of C and H atoms, respectively, EC is the total energy
per C atom in graphene, and μH is the chemical potential of
H in equilibrium with H2 gas. μH is related to temperature T

and pressure P by25,29

μH(T ,P ) = 1

2

[
EH2 + H ◦(T ) − H ◦(0)

− T S◦(T ) + kBT ln

(
P

P ◦

)]

≡ 1

2

[
EH2 + μ∗

H2
(T ,P )

]
, (2)

where EH2 is the total energy of a free H2 molecule and H ◦
and S◦ are the enthalpy and entropy, respectively, of H2 gas at
P ◦ = 1 bar, which are obtained from a standard database.30

The most significant result in Fig. 1 is the zz1212 structure
that maximizes the aromaticity in the interior of the graphene
sheet. The inset in Fig. 1 shows the atomic structure for zz1212,
where every third C atom at the edge is passivated by a single H
atom, while others are passivated by two H atoms. In addition,
there is a subedge C atom that is also bonded to a H atom, in
contrast to any known model. Previous calculation indicates
that the ac edges are more stable than the zz edges. However,
with the new zz1212 structure, the reverse is true. Figure 1
shows that at or near standard conditions (25 ◦C and 1 bar),
zz1212 is the most stable edge structure. Our results are thus
consistent with the repeatedly observed zz edges of graphene
in various experimental conditions.23,31–34 It is interesting to
note that a recent theoretical simulation of x-ray absorption

FIG. 2. Schematic showing the dangling pz electrons at three
types of C sites near the zz edge: (a) edge C bonded with a single
H atom, (b) edge C bonded with double H atoms, and (c) subedge C
bonded with a single H atom. Each teardrop-shaped lobe represents
one third of the pz electrons. The darker lobes represent the pz

electrons participating in the resonant bonding with the rest of
the system, while the brighter lobes with dashed outlines represent
dangling pz electrons.

spectra35 suggests that three extrinsic features observed in the
graphene systems in a number of experiments are the results
of mixed C-H and C-H2 motifs at the edge and subedge C sites
that are consistent with our model.

IV. ELECTRON-COUNTING MODEL FOR ZIGZAG
GRAPHENE NANORIBBONS

The stability of the zz1212 edge can be understood based
on the following electron-counting model. In bulk graphene,
each carbon site contributes one pz electron to the resonant
π bonding. One can consider that each C atom shares 1/3
pz electrons with each of its three neighbors. At a z1 edge
(see Fig. 1), each H atom saturates a dangling σ bond on an
edge C atom (on the A sublattice of graphene, for example),
while 1/3 pz electrons become “dangling,” as illustrated in
Fig. 2(a). This results in unequal numbers of π electrons on
the A and B sublattices. Similarly, as illustrated in Figs. 2(b)
and 2(c), attaching two H atoms to an edge C atom creates
1/3 dangling pz electrons on each of the two neighboring C
atoms (on the B sublattice), while attaching one H atom to a
subedge C atom (on the B sublattice) will create 1/3 dangling
pz electrons on each of the three neighboring C atoms (on the
A sublattice). With the above electron-counting model, our
extensive first-principles calculations establish the rule that
if the dangling π electrons on the A and B sublattices are
equal, the edge structure will not exhibit metallic edge states
or localized magnetic moments. In general, semiconducting
edges are more stable than metallic edges. Among all possible
edge structures with the unit-cell length smaller than 3L(z1),
only four edges, namely, z211, zz1212, zz1122, and zz21212,
satisfy the rule, although the latter two are less stable and hence
do not appear in the phase diagram in Fig. 1. It is interesting
to note that, to satisfy the electron-counting rule, the unit-cell
length has to be a multiple of 3L(z1).

V. BAND-GAP BIFURCATION

Because of the triple period of the stable zzGNRs, an
interesting issue arises; that is, if both edges are zz1212, there
would be four inequivalent registries of the two edges. Here,
we only need to consider two inequivalent registries in a half
cell, as the consideration of the full cell does not yield any new
physics except that the edge energy of the full cell is about
6 meV/Å lower than that of the half cell. The two registries,
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FIG. 3. Band structures of (left) eclipsed and (right) staggered
polymorphs of zzGNRs with (top) zz1212 and (bottom) z211 pas-
sivations. The ribbon width N is 16. The energy zero is selected
at the middle of the band gap. Insets show the respective atomic
structures, where the dashed lines define the unit cells. The mirror
symmetry present in the eclipsed polymorph is marked by an arrow.
The registry shift of the two edges in the staggered polymorph by Lh/3
is illustrated in the insets. Lh is one half of L in Fig. 1. For clarity,
H atoms are not shown. Instead, the sp3 C atoms are highlighted by
black spheres.

named eclipsed and staggered polymorphs, are shown in the
insets of Fig. 3. The two polymorphs differ by a registry shift
of the passivation hydrogen at the two edges with respect to
each other by Lh/3. Note that the lattice vector Lh for zz1212
in Fig. 3 is only one half of the L in Fig. 1.

As expected, the band gaps of the polymorphs follow a
linear relation, Eg = α/W ,4,8 as shown in Fig. 4, where the
ribbon width W is given by (3N/2 − 1)dC−C with N being the
number of zz rows and dC−C being the calculated C-C bond
length in graphene (1.425 Å). Figure 3, however, reveals that
the two polymorphs have drastically different band structures.
In particular, the Eg ratio γ is nearly a constant of about
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FIG. 4. Band gaps of the two zzGNR polymorphs with zz1212
passivation as a function of the inverse ribbon width 1/W and the
number of zz rows N . Solid lines are linear fits with α = 1.65 and
0.60 eV nm, respectively, for the eclipsed and staggered polymorphs.

TABLE I. Calculated band gaps (in eV) and their ratio γ for
the two polymorphs of zzGNRs with N = 16 and different edge
passivations. The zzHOHO and zOHH patterns are modified zz1212
and z211, respectively, by replacing every two same-site H atoms with
a single O atom. Also given are the edge energy differences between
the two polymorphs, d(�G), in meV/Å.

zz1212 zzHOHO z211 zOHH z(600)1111

Eclipsed 0.500 0.412 0.458 0.313 0.546
Staggered 0.181 0.187 0.169 0.135 0.187
γ 2.76 2.20 2.72 2.32 2.92
d(�G) 0.24 0.23 0.19 0.13 0.33

2.8 with respect to W , as seen in Fig. 4. More importantly,
the difference in the edge energy �G of the two polymorphs
converges with respect to W quickly to zero. For example, for
N = 16, the calculated difference in �G is only 0.24 meV/Å,
as shown in Table I. This suggests a bifurcation of the Dirac
fermion band gap upon quantum confinement with equal
thermodynamic stability and is in sharp contrast to that of
ordinary semiconductors where a single and hence definitive
band gap is often obtained.

VI. TIGHT-BINDING ANALYSIS

To understand the salient physics of quantum confinement
on Dirac fermions, here we present a tight-binding analysis.
We start with the z1 edges which have single periodicity (and
hence no polymorphs) and exhibit an intrinsic band gap at
the folded Dirac K point36 (and a closed gap away from
K due to edge states,13 which is unimportant to the current
discussion). The eigenfunctions of the Hamiltonian H0 can
be expressed as the superposition of two Bloch waves with
momenta (qx , ±qy) in bulk graphene, where qx is in the
periodic direction of the zzGNR and qy is quantized to satisfy
the hard-wall boundary conditions. For N � 1 and qx = K ,
the corresponding eigenvalues for the low-lying states (i.e.,
n � N ) are doubly degenerate and are given by

εn = πt

N

(
n + 1

2

)
, (3)

with quantum number n = (0, ±1, ±2, . . .), where t is the
hopping energy between the A and B sublattices of graphene.
The equal level spacing exhibited in Eq. (3) is a general
property of massless Dirac fermions arising from the linear
E(q) dispersion.

The Hamiltonian of a zzGNR with modified edges from the
z1 can be written as H = H0 + λV , where λV is the on-site
energy representing the effect of the extra H atoms that convert
the attached C atoms from sp2 to sp3. V is a diagonal matrix
with Vii = 0 (or 1) if the ith C atom has the configuration
of sp2 (or sp3), and λ is the strength of the potential that can
vary from 0 to ∞. In case where an extra H atom completely
removes a carbon pz orbital from the π -electron Hamiltonian,
λ goes to ∞. The eigenstates of H , {	n}, can be expressed
in terms of the eigenstates of H0, {ϕn}. Due to the properties
of the Dirac fermions, it can be shown that 	n takes on the
peculiar form 	n = ∑

m F (m − n)ϕm, where the expansion
coefficients depend solely on the difference between m and
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n. The functional form of F is independent of t and N in the
limit N � 1. However, F depends sensitively on the symmetry
of the eigenstates. There are two relevant types of symmetry:
one is the mirror reflection σ , as shown in Fig. 3, and the
other is the exchange P of A and B sublattices, which can be
realized by a rotation of π around a normal axis to the graphene
sheet followed by an N -dependent fractional translation. If the
system is invariant under the operation of σ , as in the case of
an eclipsed polymorph, one can show that F (m) = σF (−m),
where σ = ±1. If the σ symmetry is broken, as in the case of
a staggered polymorph, however, |F (m)| �= |F (−m)|.

Now, consider the λ→∞ limit. Because the wave functions
{	n} vanish at an sp3 site, the expectation value of V vanishes
accordingly, i.e., 〈	n|V |	n〉 = 0. Thus, the eigenvalues of H

can be expressed by

En = 〈	n|H |	n〉 = 〈	n|H0|	n〉
=

∑
m

|F (m − n)|2εm = εn − πt

N
β, (4)

where εn is given by Eq. (3) and β ≡ ∑
m |F (m)|2m is

independent of the quantum number n but dependent on the
symmetry. This indicates that the effect of V is to shift all
eigenstates of the same symmetry by the same amount while
maintaining their energy spacing. For the eclipsed polymorph
with the σ symmetry, β = 0 for states with both σ = + 1
and −1 because |F (m)| = |F (−m)|. Hence its energy band
gap πt

N
is identical to the intrinsic band gap of z1 at qx = K if

the finite-size effect of order 1/N2 is ignored. For the staggered
polymorph, the broken σ symmetry leads to a nonvanish-
ing β. Our tight-binding calculation in the limit N → ∞
yields β+ ≈ 1/3 for the states that are invariant under the
operation of P (e.g., the conduction band minimum (CBM)
state). For the states that change their sign under the operation
of P (e.g., the means valence band maximum (VBM) state),
we have β− = − β+ because of the electron-hole symmetry
of the Dirac fermions. The energy gap is thus given by Eg

= πt
N

(1 − 2|β+|) ≈ πt
3N

. Hence, a nonvanishing β leads to the
band gap narrowing in the staggered polymorph. In the limit
of λ → ∞ and N � 1, the ratio γ between the energy gaps of
the eclipsed and staggered polymorphs is 3. As a comparison,
our DFT results for 12 � N � 16 give a value of about 2.8 for
the zz1212 GNRs (see Fig. 4).

VII. OTHER PASSIVATIONS

The edge effect is intrinsic to Dirac fermions and hence
should not vanish due to different passivation. This is clearly
true if we compare zz1212 with z211 as γ is only changed
by 1.7% (see Table I). The electronic structures are also very
similar, as shown in Fig. 3. To demonstrate the universality
further, we consider copassivation of the edges by H and O
atoms, which can be realized by replacing every two H atoms
that are bonded to a single sp3 C atom by a single O atom.
This yields from zz1212 the passivation pattern zzHOHO and
from z211 the pattern zOHH. The results are listed in Table I. It
can be seen that replacing two H atoms by one O atom tends
to reduce γ modestly, owing to the possibly secondary effect
that affects the exact value of λ. Finally, z(600)1111,25 with
the removal of sp3 carbon atoms, resembles λ → ∞ and, as
expected, has the largest γ = 2.92.

VIII. CONCLUSIONS

In summary, using first-principles calculations we establish
the phase diagram of hydrogen-terminated GNRs, which
emphasizes the importance of zigzag GNRs under standard
conditions. We reveal the distinct physics of Dirac fermions
under quantum confinement in the stable zzGNRs, namely,
the bifurcation of band gap with equal thermodynamic sta-
bility. Our tight-binding model analysis demonstrates that the
symmetry of passivating atoms at the edges determines the
band gaps of the zzGNRs. We expect the band-gap bifurcation
to be experimentally observed in the zzGNRs terminated by
hydrogen as well as other species.
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