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A wavelet transform has been widely used to investigate the characteristics of wave signals for a
decade. However, only qualitative investigation of the spectrogram was made rather than a
quantitative interpretation. On the other hand, an analytical closed-form representation of the
wavelet transformed wave signal can be used as a basis function in estimating parameters using
nonlinear least-squares optimization. We derived a quantitative closed-form equation directly from
the analytical continuous wavelet transformation of a pulse with a Gaussian spectrum. A
fundamental three-dimensional shape of a wavelet in the spectrogram was obtained, and the
analytical form was compared quantitatively with numerical results. © 2010 American Institute of
Physics. �doi:10.1063/1.3429087�

I. INTRODUCTION

A wavelet transform is an integration procedure super-
posing a specific wavelet function over a given signal with
scaling and shifting a mother wavelet. The wavelet expan-
sion and transformation have been used widely in the signal
processing since the wavelet expansion coefficients represent
local temporal characteristics while Fourier coefficients pro-
vide the energy spread over all the time domain.1–3 Many
kinds of wavelets such as Haar, Mexican hat, and Morlet
have been developed, and each wavelet was chosen for the
specific purpose of the application such as signal and image
processing, wave analysis,4–7 and material evaluation.8–12

Traditionally, the evaluation of ultrasonic signals have
been the most important and fundamental task in understand-
ing the wave traveling in a medium, and the wavelet trans-
form has been used for many years13–15 to explain the evo-
lution of waves forms. However, only qualitative explanation
such as the center frequency and the distribution patterns of
the wavelet spectrograms was achieved so far rather than
quantitative investigation.16

Numerically computed wavelet transformed signals have
been often used for investigating unknown parameters.17–19

However, to estimate parameters using nonlinear least-
squares estimation20 or to perform the optimal design of
experiments21 with least estimation errors in terms of D-, A-,
E-, and T-optimality, the analytical closed-form solution of
the wavelet transformed signal has to be obtained. To meet
the needs in the aforementioned areas, we derived a closed-
form solution of the acoustic signal transformed to wavelet
domain, and verified the derived equation with numerical
examples.

II. THEORY

Let an acoustic echo have the characteristic of a Gauss-
ian distribution in the frequency domain with a mean value �
and a standard deviation �, of the form

x̂��� =
1

��2�
e−�� − ��2/2�2

, �1�

where x̂��� is the Fourier transform of a pulse x�t�. It can be
easily shown that �c=� and B=2� so that the magnitude of
the spectrum has a center frequency �c and a bandwidth B in
the form of

x̂��� =
2

B�2�
e−2�� − �c�2/B2

, �2�

and the inverse Fourier transform is defined as

x�t� =
1

2�
�

−�

�

x̂���ej�td� . �3�

Substituting Eq. �2� to Eq. �3� and integrating, we have

x�t� =
1

2�
e−j�cte−B2t2/8. �4�

With the time shift tc from the origin, a waveform which has
a Gaussian spectrum signal is expressed as

x�t� =
1

2�
ej�c�t−tc�e−B2�t − tc�2/8. �5�

Using Eq. �5�, a Gaussian-spectrum pulse signal with the
spectral characteristics of the center frequency �c, the band-
width B, and the time delay tc can be represented conve-
niently. A wavelet shown in Fig. 1�a� is made from the spec-
tral distribution in Fig. 1�b� where the center frequency fc is
6.0 MHz, the bandwidth Bf is 4.0 MHz, and the time delay tc

is 2.5 �sec.

A. Continuous wavelet transform

The continuous wavelet transform of a signal x�t� is de-
fined in a convolution form as1a�Electronic mail: jwh@egr.msu.edu.

JOURNAL OF APPLIED PHYSICS 107, 114909 �2010�

0021-8979/2010/107�11�/114909/6/$30.00 © 2010 American Institute of Physics107, 114909-1

Downloaded 19 Apr 2013 to 143.248.118.125. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3429087
http://dx.doi.org/10.1063/1.3429087


W�a,b� =� x�t��̄a,b�t�dt , �6�

where �̄a,b�t� is the complex conjugate wavelet function, a is
the scaling �dilation� factor, and b is the translation factor.

�̄a,b�t� has the form of

�̄a,b�t� =
1
�a

�� t − b

a
� . �7�

In Eq. �6�, �̄a,b�t� corresponds to the function of ej�t in the
Fourier transform. The existence of an inverse transform is
confirmed only when the admissible condition is satisfied as

�
−�

� 	�̂���	2

�
d� � + � . �8�

Equation �6� can be written in terms of the corresponding
spectrotemporal parameters such as time � and frequency �
which represent the characteristics of the signal more intu-
itively in the shape of

W��,�� = �
−�

�

x�t��̄�,��t�dt . �9�

B. Morlet wavelet and transformation

The Morlet wavelet has a Gaussian distribution in the
frequency domain,22 and it has been known that the wavelet
gives more accurate results than other wavelets since the

shape of the ultrasonic excitation input is identical with the
shape of the wavelet basis function. Therefore, in this paper,
the Morlet wavelet is selected for both excitation function
and wavelet basis. The Morlet wavelet is defined as

��t� = e−j�1te−t2/2, �10�

where �1 is the shift in frequency, and it is recommended to
keep the value of 
��t�dt less than 10−6. To keep the inte-
gration value less than the threshold, several empirical values
of �1 have been proposed.2 For the convenience, we adopt
�1=2�. This choice makes it easy to convert a unit from the
scale number a to the engineering frequency �. The scale
value a is inversely proportional to the frequency � as

a =
�1

�
, �11�

and � has the unit of radian per second. Substituting Eq. �11�
to Eq. �7�, the wavelet function can be expressed in terms of
� and � as

��,� = ��1

�
�−1/2

����t − ��
�1

� . �12�

Setting the time shift tc to be zero in Eq. �5� for the simpli-
fication, the continuous wavelet transform coefficients of the
NDE signals which has the Gaussian spectrum can be ex-
pressed as

W��,�� = ��1

�
�−1/2�

−�

�

x�t��̄���t − ��
�1

�dt . �13�

Introducing a new variable 	 as

	 =
1

a
=

�

�1
, �14�

and substituting Eqs. �12� and �14� to Eq. �13�, we have

W��,�� =
�	

2�
�

−�

�

eh�t�dt , �15�

where

h�t� = − j�c�t − tc� −
B2�t − tc�2

8
+ j��t − �� −

	2

2
�t − ��2.

�16�

Rearranging the terms in Eq. �16�, the coefficient is simpli-
fied as

W��,�� =
�	

2�
e−
�

−�

�

e−�t2−�tdt , �17�

where

� =
B2 + 4	2

8
, �18�

� = − j�� − �c� −
B2tc + 4	2�

4
, �19�
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FIG. 1. �a� A wavelet generated by Eq. �5� with the center frequency fc

=6.0 MHz and bandwidth Bf =4.0 MHz. �b� Spectral distribution of the
signal in the frequency domain.
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 = j��� − �ctc� +
B2tc

2 + 4	2�2

8
. �20�

The integration in Eq. �17� can be carried out using the
known transformation

�
−�

�

e−�x2�xdx =��

�
e�2/4�. �21�

Then, Eq. �17� is simplified to the form of

W��,�� =� 	

4��
e�2/4�−
. �22�

By substituting �, �, and 
 to Eq. �22�, the wavelet trans-
form of an echo is expressed as

W��,�� = A���e���,��ej���,��, �23�

where

A��� =� 2	

��B2 + 4	2�
e−2�� − �c�2/�B2+4	2�, �24�

���,�� =
− B2	2

2�B2 + 4	2�
�� − tc�2, �25�

���,�� =
4�c	

2�t − �� + B2��tc − ��
B2 + 4	2 . �26�

The wavelet coefficients are complex numbers, and the am-
plitude can be obtained by taking the absolute value as

�W��,���

=� 2	

��B2 + 4	2�
e�−B2	2�� − tc�2/2�B2+4	2�−2�� − �c�2/�B2+4	2��.

�27�

Equation �27� represents the time-frequency amplitude sur-
face of the wavelet coefficients by using the Morlet wavelet
as the mother wavelet and the input simultaneously. Along
the vertical �temporal center line� axis, the value shows sym-
metry such that

�W�tc − ��,��� = �W�tc + ��,��� . �28�

However, along the horizontal �frequency center line� axis,
the coefficient has asymmetry as

�W��,�c − ���� � �W��,�c + ���� . �29�

Since we have chosen �1=2�, and the variable 	 can be
substituted for the frequency f , Eq. �27� can be finally ex-
pressed in terms of f =� /2� and Bf =B /2� as

�W��, f��

=� f

2���2Bf
2 + f2�

e�−��2Bf
2f2�� − tc�2+4�2�f − fc�2�/2��2Bf

2+f2��.

�30�

The temporal resolution of the wavelet signal W�� , f� sliced
at a fixed frequency f� can be computed from the definition
as

�� =
2k

	W��, f��	2
�

−�

�

�� − tc�2�W��, f���2d��1/2

, �31�

where 	 · 	2 is the L2-norm operator and k is a constant. By
substituting Eq. �30� to Eq. �31�, we have a closed-form ex-
pression for the temporal width as

�� = 2k� 1

f�2 +
1

�2Bf
2��1/2

. �32�

The value in Eq. �32� approaches to zero when the frequency
f� or the bandwidth Bf or both become larger.

III. EXAMPLES

A. Ultrasonic nondestructive signals

The pitch-catch and pulse-echo tests are the most popu-
lar techniques for nondestuctive evaluation by ultrasonic
sources, and the reflected signal can be expressed in the form
of23

x�t� = s�t − t0� + �
i=1

N

ris�t − ti − t0� , �33�

where s�t− t0� is the front face reflection, t0 is the first arrival
time, s�t− ti− t0� are the backside reflections, ri are the reflec-
tion coefficients, ti are the time delays, and the subscript i
denotes the index set of the reflected waves. In the pulse-
echo mode, the time delay can be written as

ti =
2h

c
i , �34�

where h is the thickness of the plate, and c is the velocity of
the ultrasonic wave in the tested medium. The temporal cen-
ter and width of a random signal x�t� can be expressed as the
first moment and the second moment around the center.24

B. Comparison of wavelet coefficients

As shown in Fig. 1�a�, a synthetic signal which has the
center frequency, fc=6.0 MHz and bandwidth, Bf

=4.0 MHz was generated using Eq. �5�. The magnitude of
the frequency components is shown in Fig. 1�b�. The con-
tinuous wavelet transform of the wave form in Fig. 1�a� can
be obtained analytically by calculating Eq. �30�. On the other
hand, we can generate wavelet transform values by perform-
ing the Morlet wavelet transform numerically as described in
Eq. �6�.

Figure 2 shows the continuous wavelet coefficients of a
pulse presented in Fig. 1�a�. The amplitude in Fig. 2�a� is
computed from Eq. �30� directly while the result in Fig. 2�b�
is calculated by numerical integration expressed in Eq. �13�.
The comparison of the coefficients obtained analytically and
numerically shows a good agreement in the shape and the
amplitude with negligible level of noise.

C. Ultrasonic signal from a wideband transducer

We obtained a set of ultrasonic signal in the experimen-
tal configuration as illustrated in Fig. 3. A focused transducer
which has the center frequency fc=6.0 MHz and the band-
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width Bf =4.0 MHz was used to send an echo and to record
waves as shown in Fig. 1, and an aluminum specimen of
9.54 mm in thickness was mounted on the supports im-
mersed in the water. The ultrasonic pulse was sent and re-
ceived in the pulse-echo mode. As shown in Fig. 4�a�, the
received signal consists of waves reflected at the front side
and the backside. The polarity of the second echo is opposite

to the first echo since the backside of the specimen is free in
water. The amplitude of the wavelet coefficients is plotted in
Fig. 4�b� by the numerical wavelet transformation. From the
shapes of the plot, it is verified that the contour of Morlet
wavelet coefficients has the sharp top and obtuse bottom in
the spectrogram, forming a droplet like shape. The frequency
of the largest amplitude in the spectrogram matches with the
center frequency of the ultrasonic transducer, and the wide-
band signal shows the corresponding wide width along the
frequency axis.

As shown in Fig. 5, the sections at different frequencies
show different distributions. The temporal widths at 9.0 MHz
are sharper than other peaks at other lower frequencies re-
sulting in an improved temporal resolution due to the asym-
metry aforementioned.

D. Randomly arrived signal

Cepstrum and other different techniques such as correla-
tion method and Hilbert transformation have been widely
used to decide the arrival times of ultrasonic signals.25 How-
ever, those methods work poorly for the echoes that have
irregular time differences to adjacent echoes, and the magni-
tude of the each echo cannot be obtained simultaneously in
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FIG. 2. Continuous wavelet transform images from a time domain signal
shown in Fig. 1�a�. �a� Wavelet coefficient generated by Eq. �30�. �b� Wave-
let coefficients numerically calculated by Eq. �6�. The center frequency fc is
6.0 MHz, and the bandwidth Bf is 4.0 MHz.
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FIG. 3. �Color online� Schematic of the experimental configuration for ul-
trasonic immersion test.
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FIG. 4. Reflected waves in the experiment and wavelet representation. �a� A
typical experimental wave form with the center frequency fc=6.0 MHz and
bandwidth Bf =4.0 MHz. �b� Wavelet spectrogram of the experimental
signal.
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the time-of-flight analysis. An ultrasonic signal shown in Fig.
6�a� was generated by superposing ultrasonic echoes with the
magnitudes of 1.0, 0.8, 0.6, and 0.4, and the echoes are cen-
tered at 3.0 �sec, 6.0 �sec, 6.8 �sec, and 7.8 �sec, re-
spectively.

The wavelet transformed spectrogram of the time do-
main signal in Fig. 6�b� was utilized for the nonlinear fitting
to estimate the parameters such as magnitudes and times-of-
flight using the analytical solution in Eq. �23� as a kernel
function that represents the wavelet coefficients of an echo.
In particular, the separable nonlinear least-squares
technique26 was used to successfully estimate the unknown
parameters. In Fig. 6�c�, the result of the wavelet based non-
linear fitting �WB� is compared with the cepstrum result.

IV. CONCLUSIONS AND SUMMARY

Although wavelet transformation has been widely used,
the time-frequency representation has been interpreted only
qualitatively. In this paper, a spectrotemporal representation
of a typical ultrasonic pulse is derived and verified. The de-
rived closed-form equation represents the water drop shape
of the acoustic pulses in the wavelet domain. The quantita-
tive comparison of the peak frequency and bandwidth veri-
fies the wavelet representation of the derived closed-form
equation. The closed-form equation is readily utilized via
nonlinear least-squares optimization for estimating the num-
ber, temporal locations, and amplitudes of waves which
might travel along different reflections and sources.
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