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Abstract: It has been proposed that the general function of the brain is inference, which 

corresponds quantitatively to the minimization of uncertainty (or the maximization of 

information). However, there has been a lack of clarity about exactly what this means. 

Efforts to quantify information have been in agreement that it depends on probabilities 

(through Shannon entropy), but there has long been a dispute about the definition of 

probabilities themselves. The “frequentist” view is that probabilities are (or can be) 

essentially equivalent to frequencies, and that they are therefore properties of a physical 

system, independent of any observer of the system. E.T. Jaynes developed the alternate 

“Bayesian” definition, in which probabilities are always conditional on a state of 

knowledge through the rules of logic, as expressed in the maximum entropy principle. In 

doing so, Jaynes and others provided the objective means for deriving probabilities, as well 

as a unified account of information and logic (knowledge and reason). However, 

neuroscience literature virtually never specifies any definition of probability, nor does it 

acknowledge any dispute concerning the definition. Although there has recently been 

tremendous interest in Bayesian approaches to the brain, even in the Bayesian literature it 

is common to find probabilities that are purported to come directly and unconditionally 

from frequencies. As a result, scientists have mistakenly attributed their own information 

to the neural systems they study. Here I argue that the adoption of a strictly Jaynesian 

approach will prevent such errors and will provide us with the philosophical and 

mathematical framework that is needed to understand the general function of the brain. 

Accordingly, our challenge becomes the identification of the biophysical basis of Jaynesian 

information and logic. I begin to address this issue by suggesting how we might identify a 

probability distribution over states of one physical system (an “object”) conditional only on 

the biophysical state of another physical system (an “observer”). The primary purpose in 

doing so is not to characterize information and inference in exquisite, quantitative detail, 
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but to be as clear and precise as possible about what it means to perform inference and how 

the biophysics of the brain could achieve this goal. 

Keywords: inference; prediction; probability; information; entropy; uncertainty; Jaynes; 

Bayesian; neuron; neurocentric 

 

1. Introduction 

It is almost universally agreed that the nervous system is specialized for processing information. 

But for most people, that statement would seem too vague to be meaningful. While everyone has some 

intuitive notion of the meaning of “information” for most people, including neuroscientists, the 

concept is too poorly defined to provide any deep insight into the function of the nervous system. I 

myself had both a bachelor’s degree and a Ph.D. in neuroscience before I discovered, to my surprise, 

that there exists a precise quantitative definition of information. Although Claude Shannon gave this 

definition in 1948 [1], his work is still not widely known and understood in biology and medicine. By 

contrast, his “information theory” is nearly universally known and accepted by engineers, physicists 

and mathematicians.  

There are several remarkable facts that suggest serious shortcomings in our basic approach to 

understanding the brain and information. First, despite its considerable contributions with respect to 

engineering, information theory still has not found its way into biology and medical textbooks after  

60 years. Even standard neuroscience textbooks, including the authoritative text of Kandel and 

colleagues [2] with 1414 pages, make no reference to information theory or Claude Shannon. Thus one 

might reasonably conclude that, thus far, information theory has been of limited use in understanding 

brain function. Second, despite the explosion of knowledge about the mechanics of the nervous system 

that has taken place over the last 60 years, there has been relatively little progress towards understanding 

the information processing function of the nervous system. For example, there has not been a 

corresponding explosion in the development of artificial intelligence. This is in spite of the fact that 

virtually all scientists believe that information processing is inextricably linked to biophysical 

mechanisms, and thus one might expect our understanding of information processing to grow in 

parallel with our understanding of mechanics. Third, we lack consensus even on the gross general function 

of the brain. The authoritative text of Dayan and Abbott, entitled Theoretical Neuroscience, does not 

even speculate about whether or not the bran has a general computational goal [3]. All three of the 

factors above suggest that modern neuroscience may be missing something of fundamental 

importance. 

I propose here that these difficulties can be attributed in large part to confusion about the nature of 

information. Scientists have often mistaken their own knowledge about physical systems for inherent 

properties of the systems themselves. One consequence of this confusion has been that the concept of 

information has been divorced from the biophysical substrates that constitute the nervous system. Here 

I suggest that, properly understood, the concept of information can be grounded in biophysics and it 

can offer insight into neural function. 
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2. The Computational Goal of the Nervous System 

The concepts of probability and information are of fundamental importance to the computational 

goal of the nervous system. Since at least as far back as von Helmholz (1896) [4], it has been 

recognized that inferring the state of the world is critical to brain function (or equivalently, 

“estimating” or “predicting”). This intuitive idea has now been expressed within a formal 

mathematical framework that is typically summarized by the term “Bayesian”. There has been a 

rapidly growing view that Bayesian principles of reason and inference may provide us with a general 

computational description of brain function (e.g., [5,6]). In recent years, great progress has been made in 

understanding the information and inference that underlies a wide variety of perceptual, cognitive and 

motor phenomena in humans (e.g., [7–26]). There have also been efforts to relate Bayesian principles 

to neuronal mechanisms, although these have generally been quite speculative (e.g., [5,27–32]). 

According to Bayesian accounts, the function of the brain is to infer or predict the state of the world 

for the purpose of selecting motor outputs (“decision-making” in a broad sense of the term). I have 

proposed that the only fundamental problem in making decisions is uncertainty (lack of information) 

about the world [5]. Introspection tells each of us that if we knew everything about the world, and thus 

we had no uncertainty, then we would always know exactly what to do and we could choose the best 

possible motor outputs. The less uncertainty we have, the better our decisions will be. Thus the general 

function of the nervous system can be described in quantitative terms as the minimization of 

uncertainty (or more specifically, the minimization of uncertainty about biologically relevant aspects 

of the world), which is essentially the same as maximization of information.  

As scientists who view the goal of the brain as inference, our goal is to try to use our knowledge to 

infer the information and inference of a brain. Thus we try to “take the brain’s point of view”, a 

challenge that has been approached through a variety of different methods [5,21,24,33]. In this 

endeavor, we are presented with three entities, the scientist, the neural system under investigation, and 

the environment external to the neural system (Figure 1). A major problem addressed here is that 

scientists have often misattributed their own knowledge to the systems that they study. This problem 

can be substantially avoided by adherence to the principles developed by E.T. Jaynes [34,35]. 

Although Jaynes expressed these principles in the rigorous mathematical form of probability theory, 

they apply to all knowledge and reason, and thus they are relevant far beyond the formal application of 

probabilities. Since my experience suggests that there is minimal awareness of Jaynes within 

neuroscience, the present work is also intended to introduce his ideas to this field.  
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Figure 1. Are the information and probabilities used in neuroscience properties of the 

environment (an observed object), the neural system under investigation, or the scientist? 

The frequentist view is that probabilities are a property of a physical system (or object) that 

generates frequency distributions, and they exist independent of any observer of that 

system. The physical system could correspond to a neural system or anything else. Here I 

argue in favor of the view of Jaynes (and Laplace, shown at left) that probabilities are 

always conditional on the information of an observer about an object. I presume that the 

observer’s information must be in a physical form inside the observer. There could be 

many observers, but in neuroscience, the observer of interest would usually correspond 

either to the scientist (who observes a neural entity as well as its environment from a 

“third-person” perspective), or to the neural entity under investigation (for example, a 

brain, neuron or ion channel, which observes its environment from its “first-person” 

perspective). The arrows indicate the typical direction of information flow. The distinction 

between “observer” and “object” is merely one of perspective, and does not imply any 

fundamental distinction between the qualities of the two. 

Are Probabilities Properties of Observers or Objects? 
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3. Information and Probability 

3.1. Two Definitions of Probability 

Two fundamentally distinct definitions of probability have been proposed, “Jaynesian” (better 

known as “Bayesian”) and “frequentist” (summarized in Table 1). The key difference is that the 

Jaynesian definition asserts that probabilities are a property of the information possessed by an 

observer about an object, whereas the frequentist definition asserts that the probabilities are a property 

of the object itself, independent of any observer (Figure 1). The two definitions can be illustrated by 

the differing answers that might be given to a simple question: “An event has four possible outcomes 

which are mutually exclusive, A, B, C, and D. What is the probability of each outcome?” The 

Jaynesian answer is that, in the absence of any additional information, logic requires that all outcomes 

be considered equally likely, and thus the probability of each is 1/4 or 0.25. The frequentist response is 

that the question is inappropriate. In order to apply the concept of probability, one must first observe 

the frequency with which each outcome occurs. As one makes repeated observations of the outcome, 

one can begin to “estimate” the probabilities. To be certain of the probabilities, one would have to 

make an infinite number of observations. According to a strict frequentist definition, probabilities are 

equivalent to frequencies; they are a physical property of a system, and they are independent of an 

observer’s knowledge of the system.  

Table 1. Two definitions of probability. These can be illustrated by the following scenario: 

There are four mutually exclusive possibilities, A, B, C, and D. What is the probability  

of each? 

Definition Frequentist Jaynesian 
Answer Probabilities are unknown and undefined 

because there are no frequencies 
1/4 = 0.25 

Meaning Probabilities come from measuring 
frequencies 

Probabilities describe information 
(from any source) 

Derivation A collection of ad hoc rules allow us to 
estimate probabilities 

Logic (common sense) precisely 
specifies probabilities through the 
principle of maximum entropy 

Attribution Probabilities are a property of a physical 
system 

Probabilities are a property of an 
observer of a physical system 

3.2. A Very Brief History of Probability Theory 

Thomas Bayes was the first to explicitly and formally introduce the concept that probabilities can 

be conditional on information in what is now known as Bayes’s Theorem (BT) (he died in 1761, and 

his theorem was published posthumously). Like others before him, he simply used his own intuition to 

derive probabilities from information. Simon Pierre Laplace (shown in Figure 1) was arguably the 

most important person in the early development and application of probability theory. In the early 19th 

century, he referred to probability theory as “nothing but common sense reduced to calculation” [36]. 

To derive probabilities from knowledge, he suggested mathematical expressions of common sense, 

such as the “principle of indifference”. However, the principle of indifference was of only limited 
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applicability, and it appeared to some scientists to be arbitrary. In an effort to give probabilities an 

“objective” status, others proposed that the formal use of probabilities should be restricted to cases in 

which there was a clear relationship to measured frequencies of events. R.A. Fisher promoted this view 

in the early 20th century, and it formed the basis of William Feller’s classic text from 1950 on 

probability theory [37]. But even with the use of probabilities restricted to cases involving measured 

frequencies, steps were required to transform a frequency into a probability. Without any general and 

unified principle to guide this transformation, statisticians developed an ad hoc collection of rules that 

were applicable in special cases. In 1948, Shannon demonstrated that entropy could be used to 

quantify information [1]. Shannon’s entropy is a more general expression of Laplace’s “indifference,” 

and common sense tells us that in making inferences, we should not assume any information that we 

do not actually have. In 1957, E.T. Jaynes demonstrated that the maximization of entropy provided an 

objective basis for deriving probabilities from information [34]. He and others went on to develop a 

unified account of logic and information generally referred to as “Bayesian probability  

theory” [35,38]. For reasons disclosed below (Section 3.9), I will use the term “Jaynesian” rather than 

“Bayesian” in referring to probability theory according to Jaynes. 

3.3. The Jaynesian Definition of Probability: The Maximum Entropy Principle 

Jaynesian theory ultimately seeks to provide a unified account of information (knowledge) and 

logic (reason), and thus its relevance extends far beyond formal applications of probability theory. The 

Jaynesian definition of probability has been advanced by many authors over the years (e.g., [38]), but 

the account given here is based upon the posthumous textbook of Jaynes from 2003 [35]. According to 

Jaynes, probability theory is a natural extension of earlier work on logic. Conventional logic is 

restricted to cases in which knowledge is sufficient to categorize propositions as either true (1) or  

false (0), and thus it is not applicable to the conditions of uncertainty that characterize reality. 

Jaynesian probability theory incorporates uncertainty by describing confidence (or strength of belief) 

in a proposition on a continuous scale of 0 to 1. Conventional logic and deductive reasoning can 

therefore be understood as a special case of Jaynesian rationality. Jaynesian probability theory is a 

formal expression of logic (or reason). 

At the risk of oversimplification, the approach of Jaynes can be summarized by the statement: 

Logic is Objective, Information is Subjective 

Logic is universal and indisputable, whereas information is localized in space and time to an 

observer, and it typically differs over time between observers. 

The probability of a particular proposition (or state) is always entirely conditional on a particular set 

of knowledge or information. This conditionality is the defining feature of Jaynesian probabilities. The 

rules relating knowledge to probability are essentially just “common sense” or logic, as embodied 

within the principle of maximum entropy. The maximum entropy principle requires that we fully 

acknowledge our ignorance by considering all possibilities equally probable unless we have evidence 

to the contrary. For example, if the only information available is that “there are four possible 

outcomes”, then the probability distribution that describes that information is “flat” since entropy is 

maximized when the probabilities are all equal. Since by definition the sum of the probabilities must 
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equal one (which is merely a trivial but useful convention), the probability of each outcome is 0.25. In 

contrast to this contrived example, we often have information that does not constrain the number of 

possible states, but does constrain the location and scale. If a state of knowledge consists only of the 

location and scale (such as mean and variance), with no bounds on the state space, that knowledge is 

described by a Gaussian probability distribution, which has the maximum entropy given this 

knowledge. In some cases our knowledge derives almost entirely from observing the past frequency of 

an event, in which case the probability distribution that best describes our knowledge may closely 

resemble the observed frequency distribution. Thus knowledge derived from measurement of 

frequency distributions is treated just like any other knowledge.  

The bridge between information and a probability distribution is the principle of maximum entropy. 

The probability distribution that correctly describes a state of knowledge is the one with maximum 

entropy, and thus mathematical methods to find a probability distribution should seek to maximize the 

entropy (H).  

H (x | XY )   pi log( pi )i  (1) 

The entropy (H(x|XY) of a probability distribution is defined as the negative sum over all possible 

values of the probability (pi) of a specific value of x (xi) multiplied by its logarithm (this is the 

“Shannon entropy”) [1]. The entropy is conditional on information XY (see below for distinction 

between X and Y). (Here and in all present notation, uppercase letters denote precise information that is 

possessed by the observer, and lowercase letters denote unknown variables that are the object of 

inference.) The maximum entropy distribution (MED) is the one that most fully acknowledges 

ignorance, making no assumptions beyond those required by the available evidence. According to 

Jaynes, all probability distributions are (or should be) MEDs. Since the founding of probability theory, 

when people have correctly formulated probabilities based on their intuition or any ad hoc method, 

they have done so through a process equivalent to maximizing entropy, whether they realized it or not. 

3.4. Quantifying the Amount of Information 

A probability distribution is conditional on information, and it fully and quantitatively characterizes 

the information upon which it is conditional (with respect to a particular state space). Having derived a 

probability distribution, we can also measure the amount of information. In many applications of 

probability theory, including efforts to understand the neural basis of inference, it is not necessary to 

quantify the amount of information as a practical matter. However, it was Shannon’s effort to quantify 

information that led him to entropy [1], which in turn inspired Jayne’s maximum entropy principle. 

Shannon’s measure of information also directly inspired the “efficient coding hypothesis” of Barlow 

(1961), which has probably been the most successful of any computational theory in explaining the 

properties of neurons (e.g., [33,39–44]).  

Information and entropy (uncertainty) have a fairly simple and intuitive relationship: The more 

information, the narrower the probability distribution, and the less the entropy. The information 

determines the probabilities, and the entropy, through the maximum entropy principle. If one were to 

quantify information, it would simply be the difference between the entropy (H) that would correspond 

to the absence of the information, and the entropy that corresponds to the presence of the information.  
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I (Y | X )  H (x | X )  H (x | XY )  (2) 

In Equation 2, “Y” corresponds to the information that we wish to quantify, and “X” corresponds to 

“background” or “prior” information that is also available to the observer. This equation states that the 

quantity of information I(Y|X) depends on information X and its interaction with Y (the interaction is 

implicit in information XY). This is essentially just Shannon’s expression for information, in which 

I(Y|X) is the “information gain” and XY is the total information of the observer. However, it is 

important to emphasize that because probabilities are always entirely conditional on information, 

entropies and information “gain” are also conditional on information. They are all relative to the 

information X of the observer, and thus for two observers to agree on their values, the two observers 

must work from the same frame of reference X. Shannon did not state this explicitly, at least in his 

original work [1].  

The relativistic nature of Shannon information (Equation 2) can cause confusion and limit its 

general utility as a measure of information. Intuitively, we would like to quantify the amount of 

information in such a way that entropy corresponds directly to an absence of information, similar to 

the way in which a vacuum corresponds to an absence of matter. We would like to use a single and 

universal scale, allowing us to measure it in an absolute sense, in isolation and without consideration 

of any other information. This would allow us to quantify all of an observer’s information (XY in the 

present case). It could also help us to overcome the potentially confusing fact that “information gain” 

can actually be a negative number corresponding to information loss. For example, common language 

agrees without intuition that an observation Y corresponds to information and should have a positive 

value. But it is always possible that an observation will actually increase our overall uncertainty 

(H(x|XY) > H(x|X)) (overthrowing a hypothesis that had been strongly favored, for example). Thus 

Shannon information can actually increase uncertainty, which at the least is confusing. 

We could quantify information on an absolute scale using Equation 2 if we can identify a 

probability distribution corresponding to a state X of complete ignorance (so that no distribution could 

have a higher entropy). A truly complete state of ignorance may not exist in reality, and in any case, it 

is not possible to derive a corresponding probability distribution (since complete ignorance should 

correspond to a flat distribution over an infinite state space, but no such distribution can sum to one as 

required of a probability distribution). The next best thing would be to identify a primitive state of minimal 

information that is universal (shared by all observers). If all observers quantify the amount of 

information (in states A, B, C, etc.) relative to the same “universal prior” information X, then they will 

all measure information on a common scale and they will agree on the amount of information. 

Furthermore, if X corresponds to information that is minimal (very high entropy), then any additional 

information (XA, XB, etc.) will reduce entropy and thus have a positive value. Whether or not there 

could be a “truly universal” prior, once we conceive of a prior representing an appropriately high level 

of ignorance, then the “maximum entropy principle” of Jaynes could be restated as the “minimum 

information principle” (maximizing H(x|XY) in Equation 2 would be the same as minimizing I(Y|X)). 

This fits with common intuition and helps to elucidate the rationale for Jaynes’s maximum entropy 

principle: any distribution that has less than the maximum entropy assumes information that is not 

actually available (and any distribution that has higher entropy ignores the available information).  
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3.5. Bayes’s Theorem  

The maximum entropy principle of Jaynes is a formal expression of logic, and it is the most 

fundamental principle within probability theory, since it defines probabilities and enables their 

derivation. All probabilities should be maximum entropy distributions (MEDs). In principle, all 

probabilities could be derived through entropy maximization, and thus it is sufficient to encapsulate all 

of probability theory. However, except for the simplest states of information, deriving MEDs directly 

is challenging if not impossible as a practical matter. Fortunately there is a rule known as Bayes’s 

Theorem (BT) that allows us to manipulate probabilities without the trouble of directly maximizing 

entropy (in a formal, mathematical sense). BT takes two or more MEDs, each based on distinct 

information, and finds a single MED for all the information. Like all of probability theory, BT is 

simply an expression of logic acting on information. It is an equality derived from the decomposition 

of a joint probability into a product of its components.  

p(x | XY ) p(x | X)
p(Y | X,x  x ')

p(Y | X)  
(3) 

Verbally, it is typically described as stating that the posterior probability distribution equals the 

product of the prior distribution (p(x|X)) and the likelihood function (p(Y|X, x = x’) divided by an 

appropriate normalization factor (p(Y|X)). Information X, x = x’ is knowledge of the likelihood of 

evidence Y if we imagine that x were to have the value x’ (it is not standard notation to distinguish x 

and x’, but it is done here to clarify that in the likelihood function, the observer does not possess 

information x, which after all is the “object” of inference in the prior and posterior. However, the 

observer does know the general nature of the relationship between x and Y, and thus imagines that x 

has the specific value x’ so as to find its consequences for the probability of the evidence Y. All of the 

probabilities in BT are conditional on “prior” information X. However, within neuroscience, BT is 

routinely shown without explicitly acknowledging the existence of any prior information (e.g., [3,33]), 

leaving readers to guess as to whether the authors believe the prior probability to be unconditional and 

equivalent to a frequency, or whether the omission of X from the equation is merely a convenience. 

3.6. The General Method of Jaynes 

The general method of Jaynesian probability theory can be summarized as a sequence of steps that 

apply to the formal derivation and manipulation of probabilities (Figure 2). Here it is described in four 

steps, only the first two of which are universal and essential to any application. 

1. Precisely and explicitly state the information upon which the probabilities should be conditional. In 

the view of Jaynes, this is the most important step. Ambiguity or failure to explicitly acknowledge 

information at the outset has led to severe confusion and misunderstanding about the meaning of 

probabilities and their derivation (in addition to countless examples provided by Jaynes [35], there 

has been decades of debate about the “Monty Hall problem”, one of many trivial applications of 

probability theory that are made needlessly controversial by ambiguity about the relevant 

information). Agreement and understanding requires that all observers are utilizing the same 

information (a fact which is universally apparent to anyone above a certain mental age, and which is 
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not at all unique to probability theory). It should be noted that this first and most critical step in the 

method of Jaynes does not involve mathematics. 

a. There is a further stipulation that is particularly critical for understanding the brain and the 

physical basis of information and inference. In addition to precisely stating the information, we 

must also specify where we believe that information to be, and if possible, its putative physical 

basis. “Where” must at least specify whether it is possessed by a scientist, a neural system under 

investigation, or whether it is in the environment external to the neural system (Figure 1). Failure 

to do so has resulted in the misattribution of the information possessed by scientists to the 

physical systems they study (such as brains; documented in Sections 4 and 5.2). 

Figure 2. The General Methodological Sequence of Jaynes. 

 

2. Maximize entropy. The function that correctly describes the information is the one that maximizes 

the entropy of Equation 1 (and sums to one, as all probability distributions must). This is 

conceptually simple, although the mathematical difficulty can range from trivial to intractable, 

depending on whether the information state is simple or complex (for example, estimating the value 

of a company based on one sample of trading value on a stock market, versus a diverse set of 

financial and economic data). All “correct” probability distributions are MEDs. 
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3. Use MEDs and Bayes’s Theorem to derive new MEDs. Since the general goal of probability theory 

is to derive probabilities distributions (MEDs), and since in principle this can be done directly 

through entropy maximization, BT is not essential, in principle. As a practical matter, it is 

extremely useful because it allows us to generate new MEDs from existing MEDs in a manner that 

is much easier mathematically than directly maximizing entropy. Faced with a complex set of 

information, it can be useful to break the information into simpler “pieces”, maximize entropy to 

find a MED for each piece, and then use BT to derive a single distribution for the whole set  

of information. 

4. Quantify the amount of information. For inference and most applications, this is not necessary. 

3.7. Response to Criticisms of Jaynesian Probabilities  

Several criticisms have been made of Jaynesian probabilities. Extensive counterarguments have 

been given elsewhere (e.g., [35,38]), but I will briefly summarize several general points and relate 

these to models of brain function.  

1. Jaynesian probabilities have been criticized as being “subjective”, and thus ambiguous and not 

appropriate for science. The simple characterization of Jaynesian probabilities as “subjective” can 

be misleading. As expressions of logic, Jaynesian probabilities are objective properties of 

information without any ambiguity. Two observers with the same information will apply the same 

probabilities, and two observers with different information will apply different probabilities. The 

information is subjective in the sense that it tends to differ across observers, in accord with reality. 

It is the ability of Jaynesian probabilities to objectively describe subjective information that makes 

them so useful in understanding brain function. 

2. A second criticism of Jaynesian probabilities is that it is not always clear how they should be 

calculated. Although this is undoubtedly true, it is not a valid criticism of Jaynesian methods. To 

derive Jaynesian probability distributions, one must first be able to specify precisely what 

information is relevant, and then perform the mathematics. In the case of brain research, each of 

these might be difficult or even impossible as a practical matter, but there is no reason to think that 

it cannot be done as a matter of principle. Furthermore, there is reason to think this may not be so 

challenging with respect to the neural basis of inference (see Section 5.3). 

3. A third criticism stems from confusion of the subjective aspect of Jaynesian probabilities with our 

conscious attempts at quantifying the strength of our beliefs. Jaynesian probabilities are not simply 

a number that a person verbally reports based upon introspection. A person typically struggles to 

state the probability that one of their beliefs is true. This may be in part for the same reason that 

scientists and experts on probability theory struggle to rationally calculate probabilities in cases in 

which a great diversity of information is relevant. Of perhaps greater importance is the fact that, 

although human behavior is routinely based upon perceptions of what is probable and what is not, 

to be asked to verbally state (or consciously perceive) a probability is highly unusual and seldom 

important. To solve any particular problem, the brain must have information about some relevant 

aspect of the world (with a corresponding state space). If the brain is then asked to verbally specify 

a probability, the relevant aspect of the world (and its state space) now corresponds to the abstract 

notion of “probabilities” themselves, and the problem facing the brain has radically changed. The 
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brain may have substantial information about some aspect of the world, but may have little 

information about the probabilities. In other words, information about “X” is not the same as 

information about the probability of “X”. The former concerns the probability of “X”, whereas the 

latter concerns the probability of a probability of “X”. 

4. A fourth criticism is not aimed at Jaynesian probabilities themselves, but rather questions their 

utility in understanding brain function on the grounds that behavior is not rational (optimal in its use 

of information). Although a full discussion of this issue is beyond the scope of the present work, 

several important points should be noted.  

a. Humans are capable of reason, and there are numerous instances in which brain function is at 

least semi-rational.  

b. To assess whether a brain is rational, we first must know what relevant information is in the 

brain. We should not confuse ignorance with lack of reason.  

c. We know for a fact that the brain does not rationally integrate all of its information at all times. 

However, logical integration of smaller amounts of information, perhaps at the level of single 

neurons, is certainly conceivable. 

d. Although the application of Jaynesian principles to the brain is often viewed as prescriptive, 

specifying how the brain ought to function, my view is that Jaynesian principles are better 

viewed as descriptive (see Section 5.3). In this view, a pathological brain could be just as 

Jaynesian as a healthy brain (though likely possessing less information) [45].  

3.8. Faults with the Frequentist Definition of Probability 

Like any other intellectual endeavor, the frequentist approach to probabilities relies on the 

application of reason to information. It may be understood as a poorly formulated and incomplete 

implementation of Jaynesian principles. The most general point to be made here is that those 

maintaining a frequentist view are in reality basing their probabilities on their own information. 

Frequentist probabilities are not actually properties of an observed system, as frequentists claim. 

Some specific faults with the frequentist definition of probability are summarized below. Criticisms 

1–5 have all been made previously by Jaynes and others (e.g., [35,38]).  

1. The frequentist definition contradicts intuition, and is of limited use, because it completely fails to 

account for information that is obviously relevant to probabilities. The simple example given above 

is the statement that “there are ‘N’ mutually exclusive states” (Table 1). It is obvious that this 

statement is informative, but a frequentist definition cannot even attempt to specify any probability 

distribution as a matter of principle. The problem is not merely that frequency distributions may not 

be available as a practical matter, but rather that in many cases no relevant frequency distribution 

could ever exist. A more glaring illustration of this fault, with respect to neuroscience, is that a 

frequentist view has no means to address the plain fact that different brains have different 

information and therefore place different probabilities on the same event. Thus, frequentist methods 

are frequently inapplicable. 

2. In those cases in which frequency distributions are available, it is unclear over what finite range or 

period they ought to be measured in order to derive probabilities. It is common to assume that the 

world is “stationary” and then to extrapolate an observed frequency to its limit as one imagines an 
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infinite set of observations. But the real world is seldom if ever known to be stationary, and the 

actual data is always finite. To imagine otherwise is wishful thinking. Without any real, unique, and 

well-defined frequency distribution, the concept of a “true” probability, which we try to estimate, is 

just fantasy. 

3. Because measurement of a frequency distribution over a finite period is never sufficient to fully 

specify a probability distribution, derivation of a probability distribution requires incorporation of 

additional information that is not present in the observed frequency distribution. This is done in the 

form of “assumptions”, which in many cases are not stated explicitly and thus remain hidden. 

Statisticians assume “stationarity”, or a “Gaussian process”, or “statistical independence”. These 

assumptions actually constitute relevant information (or lack thereof) that the statistician possesses 

and uses. But conventional (frequentist) statistics does not have overarching principles for how to 

use this information, only a collection of ad hoc rules. Regardless of how this “hidden” information 

is used, its use contradicts the pretense that probabilities are derived directly from measurable 

frequencies and are thus “objective”. 

4. Empirical evidence has shown that given the same information, there are many cases in which 

frequentist methods make less accurate predictions than Jaynesian methods [35]. Thus frequentist 

methods do not consistently make optimal (logical) use of information. 

5. A common perception is that while some probabilities come directly from frequencies, others are 

conditional on information, and therefore the frequentist definition is applicable in some situations 

and the Jaynesian definition in others. But Jaynesian methods have no problem incorporating 

information derived from frequency distributions. In those cases in which frequentist methods 

succeed, they give the same probabilities that could be derived from Jaynesian methods. At their 

best, frequentist methods are a special case of the more general Jaynesian methods. Thus there is no 

virtue or advantage to the frequentist definition of probability. 

6. The most glaring faults of frequentist probabilities are not evident in conventional applications  

of probability theory in which scientists are always the observer, but arise solely when an  

observer (such as a scientist) wishes to understand how another observer (such as a brain) can 

perform inference.  

a. Frequentist methods are narrow in their objective and do not address inference in general. 

b. Frequentist methods do not incorporate logic in a formal sense, and thus cannot help in 

understanding its neural basis. 

c. The most severe fault is the misattribution of knowledge. When frequentist approaches have 

been used to study the neural basis of inference [27–33], the result has been that scientists have 

mistakenly attributed their own information (and ignorance) to the brain. Thus probabilities 

attributed to a brain under investigation have in fact been entirely a property of the scientist’s 

brain, an error of gross proportions. 

Despite these serious flaws with frequentism, I have found one small and not so serious piece of 

evidence in its favor. Before discussing any of the relevant issues in my lectures to graduate and 

undergraduate students, I simply present the same questions and answers presented above and in  

Table 1 to illustrate the two definitions (“There are 4 possibilities....”). I then require them to vote on 

whether they favor the frequentist or Jaynesian definition. Across multiple classes of students, I 
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consistently find that at least two of three students favor the frequentist definition. If Jaynes is to 

follow his own logic, he would be forced to conclude that given only these empirical results, there is at 

least a two thirds chance that his views on probability are wrong. A serious point to this amusing 

example is that according to Jaynes, the students who reject Jaynes’s definition may be making a 

perfectly rational inference given their limited knowledge. 

3.9. Jaynesian and Not Merely Bayesian 

Although Jaynes referred to his own work as “Bayesian”, as opposed to “frequentist”, there are 

reasons to favor the term “Jaynesian” for many aspects of contemporary probability theory. The 

maximum entropy principle of Jaynes is the most primitive and fundamental principle within 

probability theory. It alone defines probability and provides an objective function to derive 

probabilities from information. By contrast, BT (Equation 3) is irrelevant to the definition, as it does 

not specify precisely what probabilities are or how they are related to information. It can only be used 

to derive probabilities from other probabilities. There are remarkably successful applications of 

probability theory that do not even use BT [34]. It is not even known whether Bayes himself 

subscribed exclusively to the “Bayesian definition” of probability. I therefore propose that the term 

“Bayesian” be replaced with “Jaynesian” in making general reference to probability theory and 

inference, and in particular in referring to the definition of probabilities based on maximum entropy. 

The term “Bayesian” is appropriate when simply referring to the use of BT, which may or may not be 

strictly Jaynesian. 

Within the field of “Bayesian brain theory”, “Bayesian” has indeed been used to denote any use of 

BT. In fact, BT has often been used with frequentist rather than Jaynesian probabilities (see Section 4). 

BT is not essential to probability theory, and the emphasis on it has been excessive in my view (see 

Section 5.3). The term “Jaynesian” may draw attention to the more fundamental importance of the 

definition of probabilities as exclusively conditional. The most critical problem which has been created 

by frequentist notions, and which still persists in work purported to be “Bayesian”, is the 

misattribution of knowledge, as documented below. The method of Jaynes avoids this by insisting on 

very careful specification of the information upon which probabilities are conditional (Figure 2).  

4. Conventional Approaches to Probability and Information in Neuroscience 

4.1. The Frequentist View in Neuroscience  

The frequentist view of probability may be very slowly falling out of favor, but it still exerts a 

dominant influence within neuroscience. In 2004, a prominent neuroscientist wrote in a letter to the 

author: “How can probabilities of external events be conditional on the internal information an animal 

has, unless we assume telekinesis”? Another vivid example of the frequentist perspective comes from 

a 2010 “Review” in Nature Reviews Neuroscience [6]. Friston attributes entropy to a fish, stating “a 

fish that frequently forsook water would have high entropy”. He goes on to define a mathematical 

measure of “surprise” (as well as entropy) as a function of probabilities, yet he does not specify that 

these probabilities are conditional on any information. He then writes “a system cannot know whether 

its sensations are surprising...” These statements suggest that a frequentist view, in which probability 
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and entropy are properties of objects rather than observers, is still pervasive. Personal dialogue with 

these neuroscientists and others, and published discourse with Friston [46,47], indicated that they were 

not intentionally advocating the frequentist view over the Jaynesian view, but rather that they had been 

substantially unaware of the distinct definitions. Indeed, Friston is among the most prominent 

advocates of a Bayesian approach to understanding brain function. He does derive Jaynesian 

probabilities that are conditional on models of brain function, but he also evokes frequentist 

probabilities in trying to characterize the entropy of an entire system (brain plus environment) (where 

he uses the term “entropy” in its conventional thermodynamic sense and it is therefore not conditional on 

the knowledge of the brain under consideration) [6]. That he utilizes both Jaynesian and frequentist 

definitions, side by side and without acknowledgement, is not at all exceptional within the field of 

Bayesian brain theory (see below). 

The prevalence of the frequentist view in neuroscience is not immediately obvious because it is 

routinely used without any acknowledgment that more than one definition of probability exists. Even 

books that make extensive use of probabilities and quantify information do not clearly state a 

definition of probability or mention that there is more than one definition [3,33,48,49]. However, one 

can often infer a frequentist view. For example, it is routine to find language related to “estimating” or 

“measuring” or “approximating” a “true” probability distribution. Similarly, it is often said that sensory 

“samples” are “randomly drawn” from an “ensemble” (e.g., [33]), much as balls are said to be drawn 

from an urn in frequentist textbooks on statistics (e.g., [37]). This implies that probabilities are an inherent 

property of an object (such as an “urn”), and they exist independent of the knowledge of any observer.  

A natural consequence of frequentist probabilities is the need to imagine “probabilities of 

probabilities”, with the former probabilities being conditional on an observer and the latter being 

unconditional properties of an object (observed system). Similarly, distinctions have been made 

between the neural representation of “known and unknown probabilities” (e.g., [50]), and between 

“expected and unexpected uncertainty” [51]. As in the quotations described above, this language 

makes sense only if some probabilities are essentially the same as frequencies. To a frequentist, the 

probabilities themselves are uncertain and must be estimated, and it follows that there should be 

specialized neural circuits that are devoted to processing information about probabilities (frequencies). 

In contrast, according to a Jaynesian definition, probabilities are fully and precisely specified by a state 

of knowledge. With respect to the brain, we could either say that the brain unconsciously “knows” the 

probabilities precisely, or that the brain knows nothing about probabilities, but that probabilities 

provide a means by which we can quantitively describe the information in a brain. (Note that it can be 

useful within Jaynesian probability theory to consider “probabilities of probabilities” as an 

intermediate mathematical step in trying to calculate a probability of something believed to be “real”. 

But all probabilities are conditional and descriptive and are never presumed to exist in an ontological, 

physical sense.) 

Additional evidence of a partially frequentist perspective comes from the use of Bayes’s Theorem 

(BT). Within books [3,33,48,49] as well as many papers, BT is written and described as if the prior 

distribution is not (or at least, may not be) conditional on any information. In many cases, it is implied 

that the prior distribution comes directly from a frequency distribution, without even any speculation 

of how the observer might have knowledge of that distribution. This is evident in the work of Rieke 

and colleagues [33], which represents perhaps the most comprehensive effort to date to relate 
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information theory to neural function in a quantitative sense. In using BT to characterize the 

information in a neuron’s spike output, purportedly from “the neuron’s point of view,” they assume 

that the prior distribution is equivalent to the frequency distribution of the neuron’s input. Careful 

reading of a footnote (page 23 [33]) could be interpreted to imply that the authors believe that by 

controlling the frequency distribution of inputs (stimulus intensities), they have avoided the 

controversy over the definition of probability. In addition, their choice of words throughout the text 

implies a frequentist definition (see above). However, they also make extensive use of conditional 

probabilities, as well as the maximum entropy principle advocated by Jaynes (for example, see 

footnote on page 118 [33]). Thus they seem to imply that both definitions of probability are valid, and 

that the frequentist definition offers advantages over the Jaynesian definition in some instances. In fact, 

they and others go a step further by proposing that both types of probabilities can be combined in BT, 

in which the prior is implied to be frequentist and unconditional, whereas the likelihood function and 

the posterior distribution must then be hybrids, derived using a combination of the two distinct definitions. 

Even someone who sees merit in both definitions could question the validity of such a hybrid. 

4.2. What is a “Random Process”? 

The frequentist perspective and its terminology have a powerful influence on how we view natural 

processes, including those in the brain. It is routine to refer to neural processes as “random” or 

“stochastic” or “probabilistic”. These are all adjectives that are properly used to describe an observed 

system, not the observer (“noisy” is sometimes used in this manner as well). Thus the strong 

implication of this language is that these are intrinsic properties of these physical systems, rather than 

merely a description of our own ignorance and consequent inability to make accurate predictions. The 

notion of randomness is another example of the misattribution of information and probabilities. The 

apparent randomness of neural activity has provided the uncertainty in purportedly “Bayesian” models 

of how neurons can perform inference (see Section 4.3). 

Consider the output of each of four systems in the case of a known and invariant input (Figure 3a). 

At a brief moment in time: 

1. An ion channel is either open or closed. 

2. A vesicle containing neurotransmitter is either released or not released from a presynaptic terminal. 

3. A neuron either generates an action potential or it does not. 

4. In a “tail-flick assay”, a rat either removes its tail from a hotplate or it does not. 

In each of these cases, the input can be invariant (over time or “trials”), and yet the output is 

variable. Thus the input does not fully determine the output. Cases 1 and 2, on a more microscopic 

scale, are routinely referred to as “stochastic” or “random” processes, case 3 at the “cellular level” is 

sometimes referred to in this manner. Case 4 concerning behavior is usually not said to be “random”, 

and most neuroscientists would probably agree that no behavior is a “truly random process”. Are these 

cases fundamentally distinct from one another? What is a “random process”, and how would one 

recognize it? 
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Figure 3. Illustration of neural systems that are sometimes said to be “random, stochastic, 

noisy, or probabilistic.” (a) Fixed and known inputs to these systems result in variable 

outputs. From top to bottom: In response to a certain concentration of neurotransmitter, or 

a specific membrane voltage, an ion channel can be open or closed; in response to arrival 

of an action potential, a presynaptic terminal may or may not release a vesicle of 

neurotransmitter; in response to a given amount of excitatory postsynaptic current, a 

neuron may or may not generate an action potential; in response to a given temperature, a 

rat may or may not remove its tail from a hotplate. According to contemporary physics, 

none of these systems are “random”, “stochastic”, etc. These terms purport to describe a 

physical system, but they only indicate our ignorance of the system; (b) an example of a 

typical model of an ion channel. The channel can exist in any one of multiple states. With a 

patch electrode, we can only discriminate open (“O”) from closed (“C”) states. The various 

closed states are “hidden” from our observation, but we can infer their existence through 

careful analysis. The other three cases illustrated in “a” are analogous, but because they are 

less microscopic in scale, their “hidden” states can be more readily observed. 

Are Some Neural Processes Random? 

 

If input does not fully determine the output of a physical system, is the system partially “random”? 

The answer, with respect to each of the four cases above, is “no” according to the view of 

contemporary physics. In each case, the system is believed to exist in a state that is “hidden” from the 
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observation of the scientist at the time of the input. These hidden states act “behind the scenes” to 

determine the observed output of the system for any given input. The apparent randomness of the 

system is merely the product of the ignorance of the scientist. According to present scientific dogma, it 

is only at the very small scale of quantum physics that physical systems are “truly random”. One could 

question, as Jaynes did, how physicists could ever be confidant that their inability to predict the 

behavior of any system, including systems on a very small scale, is not merely due to their own 

ignorance [52]. Regardless of the interpretations of quantum physics, there should not be any 

controversy within neuroscience, where according to modern physics, no system of interest is “truly 

random”. The inability of neuroscientists to predict the state of a neural system should be entirely 

attributed to the ignorance of neuroscientists. 

It may be useful to consider these neural systems in more detail. Ion channels are the most 

microscopic of the four systems listed above. Until the invention of the patch-clamp method of 

electrophysiological recording, it was not possible for us to observe the electrical behavior of single 

channels. Now we know that many single channels have just two conductance states, open or closed, 

and we cannot predict with high accuracy the conductance state of a single channel at any moment. 

However, our best models of ion channels consist of numerous open and closed states (mostly closed 

states), which are indistinguishable in patch-clamp recordings (Figure 3b) [53]. As new experimental 

data have been collected, new models have been made with more “hidden states” in order to better 

account for the experimental data. Unfortunately we do not currently have a technique that can “see” 

the states that are hidden from patch electrodes, but it is conceivable that one day these states may no 

longer be hidden from us. In principle, we might also be able to “see” the microscopic effects of heat 

(such as collisions of an ion channel with other molecules), which would then need to be considered as 

additional inputs. What had once appeared to some to be “random” could then be reclassified as 

“deterministic”, but of course all that would have changed is the knowledge of scientists. 

The case of action potential generation is better understood and is generally thought to be more 

directly relevant to neural inference. Action potentials can be recorded with electrodes that are 

intracellular and measure voltage across the neuron’s membrane, or with extracellular electrodes that 

are sensitive to the time of the action potential but not to the membrane voltage. If extracellular 

electrodes are used, then it is observed that the neuron’s spike output varies even when its input 

(“stimulus”) is the same. The neuron’s output (firing rate) has thus been modeled as a Poisson 

“random” process. However, the neuron’s output does not appear nearly so “random” when one uses 

an intracellular electrode, in which case action potentials are always preceded by a depolarization 

towards a threshold. According to well known models of neuronal membrane biophysics (such as  

Hodgkin-Huxley models), there is nothing random about the generation of action potentials [53]. 

When synaptic excitation occurs, whether or not the neuron emits a spike will be determined by a large 

variety of “hidden” variables that cannot usually be observed even by intracellular electrodes, such as 

the conductance of potassium channels. If one knew the state of all of the ion channels, as well as other 

biophysical properties of the neuron, then one could accurately predict a neuron’s output for any 

known input. 

It is obvious that the same system cannot be “random” when observed with one technique and 

“deterministic” when observed with another technique. It is also clear that neuroscience would have 

suffered a tremendous setback if early pioneers of extracellular recording had concluded that action 
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potential generation was substantially random, and that we should therefore be satisfied merely to 

characterize Poisson spike statistics without seeking greater knowledge of underlying mechanisms. 

With such a view, Hodgkin and Huxley might not have attempted to construct a biophysical and 

deterministic model of action potential generation. The entire scientific enterprise is based on our 

belief that Nature is full of information that we can acquire through careful observation. Were we to 

abandon this belief in favor of the view that a particular system is “random”, then the implication is 

that the system has no further information to yield and thus we should not invest our time in searching 

for a deeper understanding of it. 

How then are we to use the words “random, stochastic, and probabilistic”? The use of these words 

to describe physical systems is at best misleading, and at worst, pathological and harmful to science. 

However, it is perfectly clear and appropriate to state that a model of a physical system has a “random” 

or “stochastic” component. This does not imply that the scientist necessarily believes any physical 

system to be “truly random”. The random component typically corresponds to a component of the 

model that is not sufficiently understood, or not sufficiently important, for the scientist to specify in 

detail. The scientist has complete knowledge of the model, which he or she created. The model 

naturally corresponds to a hypothesis about a physical system, based upon the scientist’s knowledge, 

and the random components of the model correspond to our ignorance about the physical system. As 

emphasized repeatedly here, we should not confuse our knowledge of a physical system with the 

physical system itself (which we believe to have an independent existence). 

4.3. “Random” Neural Activity in Models of Bayesian Inference 

In much of neuroscience it is of limited practical consequence whether an event, such as the release 

of a vesicle, is inherently random or merely unpredictable for the scientist. However, biological 

models of Bayesian inference have relied on this apparent randomness to derive probability 

distributions that are purported to be conditional on neural activity but are derived simply from 

measuring frequency distributions of firing rate across time (repeated “trials”) (e.g., [27–33]). In many 

of these “Bayesian” models (e.g., [29–31,33]), the variability (“randomness”) in the firing rate of a 

neuron given some stimulus provides the basis for the uncertainty in the neuron’s estimate of the 

stimulus. Similarly, this variability has been declared to be “noise” which could only increase a brain’s 

subjective uncertainty about the “signal” (e.g., [54,55]). In most of the cases cited above, the authors 

do not know the source of the variability, they do not speculate about the source, they do not state 

whether the source of the variability even matters, and they do not state whether they believe that the 

variability is inherently random. But if this variability is not inherently random, and is instead 

determined by the information of ion channels (as described by Hodgkin-Huxley models) about the 

external stimulus, then it is far from clear why it should have any correspondence to subjective 

uncertainty. If one accepts the Jaynesian definition of probabilities, and concludes as Jaynes did that 

there is nothing inherently random about neural activity or any other physical system, then it becomes 

clear that the uncertainty that has been attributed to neurons in these Bayesian models is actually the 

uncertainty of the scientists themselves about the neuron’s activity (which is itself shaped by highly 

arbitrary choices of neuronal models and measurement techniques) (see Section 5.2). Jaynesian 

methods prevent this sort of misattribution of information, as described above. 
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5. Jaynesian Approaches in Neuroscience 

The value of Jaynesian probability theory is in providing the foundational framework for 

understanding information and logic. Jaynes did not address the physical or neurobiological basis of 

information and logic. In another article in this same issue of Information, Phillips also explores the 

work of Jaynes in relation to brain function and he comes to conclusions that are similar in several 

respects to my own [56]. In addition, he suggests how Jaynesian inference may relate to the function of 

networks of cortical neurons through a process known as “Coherent Infomax” [56,57]. 

5.1. Why Is a Strict Jaynesian View Critical to Neuroscience? 

The advantages of Jaynesian probability theory have been well documented (Section 3). But in 

many applications, these advantages may be seen as rather philosophical and technical matters that 

have only modest influence on the actual probabilities. The main rationale for arguing forcefully for a 

Jaynesian definition is that it allows us to describe and quantify sets of information other than our own, 

or that of Science. This is a tremendous virtue, since different brains have different information.  

5.2. Two Jaynesian Approaches: First-person (Neurocentric) versus Third-person (Xenocentric) 

In studying a physical system, a scientist is an observer, and the physical system is the object of 

inference. Although we necessarily observe brains (and people) as objects, we also believe that they 

themselves are observers (Figure 1). The distinction made here between an object and an observer is 

only one of perspective, or frame of reference, with no connotation of any particular physical 

distinction (other than displacement of the two in space). We can distinguish two observers, or 

perspectives, that are critical within neuroscience. As an observer of the brain, a scientist is analogous 

to the role of a “third-person” narrator in literature, whereas the observed system (brain, neuron, or ion 

channel) is analogous to the “first-person”. The third-person perspective of the scientist could be 

denoted as “xenocentric”, since the scientist is “foreign” and external with respect to the brain and its 

world, whereas the first-person perspective of the brain could be denoted as “neurocentric”. Although 

the conventional perspective of Science is xenocentric (with respect to the physical systems being 

observed), the value of a neurocentric approach is implicit throughout the literature on “Bayesian” 

inference, even where there have been disagreements (e.g., [43,44]). To take a neurocentric approach, 

we must try to imagine seeing the world from the brain’s perspective, and a variety of formal 

approaches have been used for this purpose [5,21,24].  

Scientists ideally try to work from a common, shared body of knowledge, and to thereby describe 

nature from the common perspective of a unified Science. To the extent that two rational scientists 

share the same information, they will naturally agree on the probabilities. Indeed, the sharing of 

information is why the Jaynesian versus frequentist debate sometimes appears to be of only slight 

consequence with respect to the actual probabilities. Frequentist probabilities tend to be very similar 

(numerically) to third-person Jaynesian probabilities. However, we can expect that the information of a 

brain or neuron is likely to be very different from that of a scientist about that same aspect of the 

world, in which case the probabilities will be very different.  
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The distinction between neurocentric and xenocentric is not at all restricted to probabilities. 

Whether in science or our personal lives, we must always observe from a particular perspective. In 

psychology and cognitive neuroscience, this same issue was once actively debated. B.F. Skinner was 

the most prominent advocate of a xenocentric approach to behavior (“behaviorism”), in which the 

input-output relationship of an animal or human is studied as an object like any other physical system. 

Although this approach can be useful, the input-output relationships are hopelessly complex. Indeed, 

we cannot even adequately understand the function of a single ion channel without consideration of its 

many hidden internal states (Figure 3b). Since the rejection of Skinner’s xenocentric approach some 

decades ago, psychologists have adopted a neurocentric approach (“cognitivism”), treating a person or 

even an animal as an observer.  

Within neuroscience today, the perspective taken depends almost entirely on whether the system 

being studied is viewed by the scientist as “high” or “low”. In studying “high-level”, “cognitive” 

systems that are presumed closer in function to the conscious experience of humans (e.g., prefrontal 

cortex), a neurocentric perspective is adopted. But in considering parts of the nervous system that are 

viewed as sensory or motor, or in considering any brain region in a “lower” animal, biologists have 

seldom taken a neurocentric approach. In studies at the cellular or molecular level, xenocentric  

input-output analyses in the spirit of Skinner are the absolute rule. Even when the goal of “taking the 

neuron’s point of view” has been explicitly stated by the authors, the actual probability distributions 

have been conditional on the information of the scientists about a neuron’s inputs and outputs. This is 

true of the work of Rieke and colleagues [33] (see Sections 4.1 and 4.3), as well as that of many others 

(e.g., [3,27–33,39–44,58–60]). In Jaynesian terms, “likelihood functions” have typically been shaped 

entirely by the experimenter’s knowledge of variability in a neuron’s output (“noise”) without any 

account of the neuron’s “hidden” states. In those cases in which (non-flat) priors have been used, they 

have been determined by the experimenter’s knowledge of a frequency distribution and they have had 

no known biophysical basis. The failure of the authors to adopt a neurocentric perspective might be 

attributed to lingering frequentist notions (see Section 4.1). 

5.3. Beyond Bayes’s Theorem  

I believe that one virtue of Jaynesian theory in contemporary neuroscience is to counter what I see 

as an excessive emphasis on BT (Equation 3). Whereas the mainstream view seems to be that to “be 

Bayesian” is synonymous with the “performance” of BT, BT is not an absolutely essential aspect of 

probability theory (Section 3). An underlying assumption of the mainstream view is that it is not 

sufficient for the brain to merely integrate biologically relevant information in a physical sense, but 

that it must go further by using that information for computing probabilities and performing the 

associated mathematics [3,6,27–31,49]. For example, at the heart of Friston’s “free energy” formulation 

of brain function is the proposal that in order to perform BT, neurons must overcome the difficulties of 

integration (in calculus), and that they may do so by implementing approximation techniques known to 

statisticians, such as “expectation-maximization” or “variational Bayes” [6]. Thus the mathematical 

techniques that we have developed may prescribe how a brain should be rational, and the brain may 

have evolved to be rational through the evolutionary pressure to perform such mathematics. There are 

at least three important criticisms of this view.  
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1. First, these models presume that the brain needs to “know the probabilities” and that a probability is 

the answer to an inference problem and should thus correspond to a neuronal output. This implies 

that a brain could have information and yet be incapable of inference because of its inability to do 

the math. But although the brain needs to know about aspects of the real world, it is not at all clear 

that it needs to “know about the probabilities” of aspects of the real world. Information about “X” is 

not the same as information about the probability of “X”, the latter relating to the probability of the 

probability of “X” (Section 3.6). As Jaynes emphasized, probabilities describe knowledge about the 

real world, but they are not “real” in themselves anymore than any number is real. Their status is 

epistemic and not ontological.  

2. Second, if the brain does in fact need to calculate probabilities, then the first calculations must 

identify maximum entropy distributions that are conditional on the brain’s information. BT is 

useless until probabilities are available. Thus it is at best premature to focus on the math of BT 

rather than the more fundamental precursor of entropy maximization. And if maximization of 

entropy can somehow be achieved readily, even for complex sets of information, then BT  

is unnecessary.  

3. Third, it has been proposed that neurons perform BT, taking a prior and one or more likelihood 

functions as inputs, and generating an output that represents the posterior [6,27–31]. It is important 

to keep in mind that BT is merely an equality in which the same information is represented on both 

sides of the equation; the posterior simply describes the information with one distribution rather 

than two or more. Thus the inputs and output of a neuron that performs BT would have the same 

information content. This contradicts the common and well supported notion that by transforming 

inputs to output, a neuron transforms information about one object (“stimulus” or “cause”, as 

determined by its receptive field) into information about another object. For example, the output of 

a neuron in primary visual cortex can signify information about orientation, whereas none of its 

individual presynaptic input neurons does so. BT does not specify any transformation of 

information, it only expresses the same information in alternate forms. In this regard, BT is fully 

analogous to a statement of the form 12 = 3 × 4 = 24/2, etc. To suggest that BT captures the 

essential feature of higher brain function, and that the brain should “compute BT” because the 

posterior (“12”) is in some way better than the product of the prior and likelihood (“3 × 4”), is to 

suggest that a calculator is an apt analogy for the essential computational function of the brain.  

The alternate view favored here is that to function well the nervous system needs to have the right 

information in the right place at the right time, but that it has no need to perform any of the 

mathematics of probability theory [5,61]. I suggest that when information is integrated in both space 

and time, it can be described by Jaynesian probabilities in the same way that calculus describes the 

motion of objects. There is no meaningful sense in which a moving object “performs” the methods of 

calculus. The methods of calculus simply help us to accurately describe the motion. Likewise, the use 

of probabilities is purely descriptive with respect to a neuron’s information and uncertainty. Though 

not strictly Jaynesian (see Sections 4.3 and 5.2), studies that have applied information theory to “the 

neural code” have also used probabilities, and BT, in a purely descriptive manner without any 

implication that the neurons should or do “perform the math” [33,39–44]. The argument for seeing 

probabilities as descriptive of a physical system, with no need for the system to perform the math, is 
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based in part on the fact that entropy maximization is universal, and it can be viewed at once as a 

principle of both physics and inference. Thus I propose that Jaynesian theory should not been seen to 

prescribe how neurons should function, or place any constraints on them, beyond the simple but 

critical point that, other things being equal, more information is better. 

If Jaynesian logic is viewed as prescriptive, then this would naturally call for experimental tests to 

verify how well, if at all, the brain follows Jaynesian principles. The results may be expected to vary 

on a case by case basis, with the brain being rational in some respects but not in others. By contrast, if 

Jaynesian probabilities are viewed as purely descriptive, then the issue of empirical verification does 

not arise. The probabilities merely describe the information in the brain, whether the brain functions 

well or is pathological [45]. It is critical to note in this regard that although Jaynesian logic may be 

“perfect”, it does not necessarily imply intelligence. It merely describes information, which could be 

substantial or minimal. However, the proposal that the computational goal of the brain is to reduce 

Jaynesian uncertainty [5,61] would predict that a brain or neuron with greater information would tend 

to generate outputs that are of greater utility with respect to the biological goals of the animal. In 

principle, this could be tested experimentally. 

5.4. Characterizing the Information that One Physical System Has about Another 

In virtually all applications of probability theory, the probabilities and information have no known 

physical basis. Jaynesian probabilities are conditional on information, and we can presume that the 

information must be within some physical substrate, but we cannot say precisely what the substrate is 

or how the probabilities are conditional on that physical reality. What we would like is to be able to 

identify a probability distribution over states of one physical system (“the object”) conditional 

exclusively on the information inherent within the state of another physical system (“the observer”). 

To the best of my knowledge, this “physical inference” has never been described in a precise 

quantitative manner for any physical system, either in physics or neuroscience.  

Although Jaynes was a physicist, he did little to directly address the physical basis of information or 

logic. Like Laplace before him, he developed probability theory to allow us to characterize the 

information of scientists about the world, and he primarily applied probabilities towards problems in 

physics. Among his greatest achievements in this regard was his simultaneous introduction in 1957 of 

the maximum entropy principle and its application to the field of statistical mechanics (SM) [34]. The 

central challenge in SM is to estimate the properties of microscopic molecules (their positions and 

velocities, for example) given knowledge of macroscopic factors that we can readily measure, such as 

pressure and temperature. The foundations of SM had been laid decades earlier by people such as 

Maxwell, Boltzmann, and Gibbs. They had developed SM through statistical inferences, but because 

of frequentist notions, SM had not been recognized as purely a matter of inference. Given the lack of 

any objective basis for inference, the derivation of probability distributions was conceptually complex 

and full of assumptions (such as “ergodicity”) that seemed presumptuous and rather arbitrary. Jaynes 

reconceptualized SM as entirely a matter of inference, and he used his maximum entropy principle to 

derive all the essential results of SM for systems at equilibrium [34]. In addition to introducing 

maximum entropy inference, Jaynes provided an amazingly short and simple derivation of SM, and he 

demonstrated that the probability distributions of SM are based on an extremely simple state of 
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information. Specifically, he demonstrated that given only knowledge of the temperature (average or 

expected energy) of a physical system, the maximum entropy probability distribution over energies 

within the observed system is exponential (in the case of just one degree of freedom). This is the 

“Boltzmann distribution” and it allows for the derivation of many other distributions, such as the 

Maxwell-Boltzmann distribution of velocities for particles in a gas. (It is noteworthy that Jaynes 

accomplished all of this without any use of BT [34].) 

Jaynes demonstrated that a small and simple state of information is sufficient to derive probability 

distributions, and in some cases it can be extremely powerful in making accurate predictions about the 

world. This suggests that the physical basis of inference may be an approachable problem, at least in 

cases in which the observer possesses only a small amount of information. Mathematically, the 

derivation of probabilities is simpler for simpler sets of information. Furthermore, when we consider 

physical inference, it may be that we typically need to consider only small and relatively simple states 

of information. 

When we think of a brain, or a computer, we imagine a large and complex set of information of the 

sort that in practice would overwhelm a team of the best probability theorists. This information is akin 

to a vast library (e.g., Google’s servers), but a library does not consist of integrated information. To 

perform logic and inference, the information must be physically integrated in both space and time. In 

computers, this physical integration occurs in transistors, and in a nervous system, it occurs most 

notably in proteins (such as ion channels) and within the membrane voltage of neurons (which 

integrate information from many ion channels). Here I consider that an “observer” corresponds to an 

entity that physically integrates information in both space and time. With respect to the nervous 

system, a single observer could correspond to a protein or a neuron’s membrane voltage, but not to a 

network of neurons or an entire brain (which would be rather analogous to a library, with most 

information not being integrated). The necessity of physical integration tremendously simplifies the 

problem, because a physical observer does not possess a great diversity of information at any one time 

(though of course a nervous system consists of many such observers).  

We can presume that the knowledge of an observer about the external world corresponds to 

“knowledge of self”. An observer knows with certainty its own state, including its configuration, 

temperature, mass, etc., and its estimate of the external world must be entirely conditional on this 

information. Jaynes derived the probability distributions of SM, most notably the Boltzmann 

distribution, conditional only on a single “observation” (or “sample”) of temperature. If scientists can 

infer the state of molecules given such information, why should molecules themselves not be able to 

infer the state of other molecules given the same information (assuming that probabilities are purely 

descriptive and an observer does not need to “perform the math”)? This idea formed the basis for my 

previous proposal that the Boltzmann distribution can describe the information held within an ion 

channel (and less directly, the information held within membrane voltage, which is determined by ion 

channels) [5,61]. This information includes the channel’s temperature, its present configuration, and its 

inherent sensitivity to an external factor (such as neurotransmitter concentration or membrane voltage, 

which may in turn carry information about something external to the brain, such as light intensity). 

Scientists routinely use the Boltzmann distribution to describe the probability that a voltage-sensitive 

channel will be in a particular conformation (and therefore have a particular conductance across the 

membrane) conditional on knowledge of the membrane voltage [53]. Thus my proposal is that we can 
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take the neurocentric perspective of an ion channel by using the Boltzmann distribution in the opposite 

of its conventional direction. However, it should be noted that this use of the Boltzmann distribution 

has not yet been rigorously justified. A single sensor was proposed to specify a sigmoidal probability 

distribution [5,61], but a probability distribution over an inherently infinite state space (such as 

voltage) cannot have a sigmoid shape (since the probabilities must sum to one). Thus further work is 

needed to precisely specify probabilities that are entirely conditional on the information held within a  

simple sensor. 

To understand how a single molecule could “perform inference”, it is not essential to understand 

proteins or biophysics or even Boltzmann’s distribution. The simple point is that at each moment in 

time, a molecular sensor “observes” a single “sample” of some external quantity (external to the 

neuron), such as neurotransmitter concentration. As Jaynes demonstrated, in SM and numerous other 

cases, that is all the information that is necessary to derive a probability distribution and “perform” 

inference. By observing that sample, the probability distribution conditional on the information of the 

molecular sensor (and thus the neuron) is narrower than it would be were the sensor not there to 

observe the sample (see Figure 1 in [61]). Thus uncertainty (entropy) is reduced from the perspective 

of the molecule and the neuron. Accordingly, when we say that the brain “performs inference” or 

“minimizes uncertainty”, we can have a very clear understanding of what this means, even if as a 

practical matter we cannot actually quantify it using probabilities. 

If a single molecule is capable of performing inference and reducing uncertainty, then one could 

reasonably argue that this is trivial. Every cell in the body is full of such molecular sensors, and this 

certainly does not in itself provide clear insight into the structure of the nervous system. However, 

some sensors, and some synaptic inputs, provide more information than others depending on the 

statistical structure of the neuron’s environment, and this forms an objective basis for understanding 

which inputs a neuron should select and what sorts of learning rules it should implement [5,61]. In 

addition, the goal is not to minimize uncertainty in general, but specifically to minimize uncertainty 

about biologically relevant aspects of the world. The synaptic connectivity of the nervous system is 

such that, if one considers successive neurons spanning the spectrum from sensory to motor, each 

successive neuron has less information about sensory aspects of the world and more information about 

biological goals, thereby achieving the general computational goal and producing a behavioral output 

that corresponds to the system’s best guess as to the action most relevant to biological goals [5]. Thus 

it is not difficult to relate inference at the molecular level to the computational goal of neurons and 

nervous systems. 

6. Conclusions 

Whereas it is commonly implied that our lack of understanding of brain function should be 

attributed primarily to its complexity, and to its many mechanistic properties that we have not yet 

characterized, the alternative view presented here is that confusion about the nature of information has 

been a more fundamental problem. A major source of that confusion has been the longstanding 

frequentist notion that the probabilities and information that scientists have characterized are properties 

of the physical systems that scientists observe, when in fact these probabilities describe the 

information of the scientists themselves about those systems. Jaynes referred to this as the “mind 
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projection fallacy” [35]. There is reason to expect that once this practice has been recognized as a 

fallacy, progress towards understanding the brain will be greatly accelerated. 
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