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Abstract

Current DNA sequence datasets have become extremely large, making it a great challenge for single-
processor and main-memory-based computing systems to mine interesting patterns. Such limited hardware 
resources make the performance of most Apriori-like algorithms inefficient. However, recent implementation 
of a MapReduce framework has overcome these limitations. Furthermore, mining with maximal contiguous 
frequent patterns to express the function and structure of DNA sequences is a useful technique, capable 
of capturing the common data characteristics among related sequences. In this paper, we proposed an 
efficient approach for mining maximal contiguous frequent patterns in large DNA sequence data using 
MapReduce framework which can handle a massive DNA sequence datasets with a large number of nodes 
on a Hadoop platform. Our extensive experimental results show that the proposed approach can mine the 
complete set of maximal contiguous frequent patterns very efficiently.
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1.	 Introduction

In living organisms, DNA does not usually exist as a 
single molecule, but instead as a pair of molecules that 
are held tightly together, so one of the most interesting 
challenges is to discover sequences that are similar or 
identical between different genomic locations or different 
genomes.

Similar sequences may be present because they have 
been conserved or selected during evolution due to some 
mediating important biological functions. Because of 
the size of the DNA sequence, data are very large, and 
the character set is small; the short patterns are almost 
frequent without exception. From them, biologists 
assemble whole genome of species based on frequent 
contiguous sequences.

How to efficiently discover long frequent patterns poses 
a great challenge for existing sequential pattern mining 
algorithms. The reason of the maximal contiguous 
frequent pattern mining is that it is also the frequent 
pattern, the boundary of frequent pattern set.

Therefore, in this paper we proposed a MapReduce and 
Hadoop based technique for mining maximal contiguous 
frequent patterns in a large DNA sequence dataset for 

the first times ever. This paper is organized as follows. 
Section II surveys related works. Section III represents 
the problem regarding the maximal contiguous frequent 
pattern mining. Section IV represents our proposed 
MapReduce framework for mining maximal contiguous 
frequent patterns and The MCFP algorithm. Section 
V represents experimental results. And finally, we 
conclude our paper at section VI.

In this paper, we used the term “sub-sequences” and 
“patterns”; “database” and “datasets”; “concatenated”, 
and “contiguous” interchangeably. And, we also used 
the acronym PDB for Projected Database; BPs for Base 
Pairs; CFP for Contiguous Frequent Patterns, and MCFP 
for Maximal Contiguous Frequent Patterns.

2.	 Related Works and Background Study

Many researches have been done in the field of biological 
sequence mining. The problem in finding the maximal 
contiguous frequent pattern is of substantial importance to 
bioinformatics and is widely examined in the literature [1-3].  
Based on the idea of Apriori [4], a more efficient 
algorithm called PrefixSpan [5] has been proposed in 
recent years. Its general idea is to examine only the prefix 
sub-sequences and project only their corresponding 
postfix sub-sequences into PDBs. In each PDB, sequential 
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sequences are grown by exploring local length-1 
frequent sequences. Moreover, a main-memory-based 
pseudo-projection technique was developed to save 
the cost of projection when the PDB and its associated 
pseudo-projection processing structure could be fit in 
the main memory. However, when mining long frequent 
concatenated sequences, this method is inefficient. 
Therefore, it is impractical to apply PrefixSpan  [5] to 
mine long contiguous sub-sequences from biological 
sequence datasets.

Pan et al. [6] first introduced the concept of the variable 
length spanning tree method to mine maximal concatenated 
frequent sub-sequences. They, proposed two algorithms 
called MacosFSpan and MacosVSpan based on PrefixSpan 
[5], that effectively reduces the recursive process. Although 
the MacosVSpan algorithm is very efficient for mining long 
concatenated frequent sub-sequences, the MacosFSpan 
have some limitations making it unsuitable for mining long 
contiguous frequent patterns; first, it constructs length-4 
fixed length sub-sequence candidates; then, candidates of 
length-5, length-6, etc. It is very time-consuming process. 
Second, it did not consider about the size of PDBs and 
reality is that the size of physical PDBs are very large 
compared to the original datasets and in most of the cases, 
these PDBs will not fit into the main memory. Third, 
fixed length scanning method is very inefficient for large 
sequence datasets, because of millions of BPs. Fourth 
problem is that both MacosVSpan and MacosFSpan uses 
in-memory pseudo PDBs using pointer-offset pairs only; 
but only pointer-offset pair are not enough for processing 
all the prefix and suffixes.

In literature [7], the authors claimed that their proposed 
algorithm is more efficient than MacosVS algorithm; 
but for mining long frequent concatenated sequence, 
MacosVS algorithm is much more efficient than 
MacosFSpan algorithm and basically literature [7] was 
proposed based on [6] and needs multiple times database 
scanning. Although this approach reduces the recursive 
execution process for expanding sub-sequences, but 
it also has the problem of creating and processing 
with projected databases. Thus, this approach is also 
inefficient to produce the result in a faster way.

Therefore, from the above surveys, it is clear that 
the traditional contiguous frequent pattern mining 
algorithms [5-7] usually takes a DNA sequence database 
and generates candidate item sets using fixed length 
spanning tree or suffix tree-based algorithm [1,2,8].  
Surprisingly, all of the previous works [1,2,4-9] assumed 
that the DNA sequence datasets, associated tree 
structure, and all the associated projected databases 
could be fit into the main memory, but many practical 
DNA sequence database size is huge, sometimes 100 GBs. 
So, certainly, these will not fit into the main memory.

On the other hand, parallel and partitioning approaches 
in distributed environments also been introduced 
to mine frequent patterns from sequence databases; 
however, in distributed environments, communication 
cost is huge because of many message passing, 
data sharing, and I/O operations. These poses very 
impractical to use distributed systems for mining 
large datasets. That is why MapReduce [10-12] is 
a very suitable framework to mine these sorts of 
datasets, where it only needed to share and pass the 
support of individual candidate item set rather passing 
the candidate item set itself. Therefore, definitely 
communication cost is very low compared to the 
distributed environments.

2.1	 MapReduce

MapReduce was developed within Google [9] as a 
mechanism for processing large amounts of raw data, 
for example, crawled documents or web request logs. 
These data are so large; it must be distributed across 
thousands of machines in order to be processed in a 
reasonable time. This distribution implies parallel com-
puting since the same computations are performed on 
each CPU, but with a different dataset. The user of the 
MapReduce library expresses the computation as two 
functions: Map and Reduce [10-12]. It merges together 
these values to form a possibly smaller set of values. 
Typically, just zero or one output value is produced per 
reduce invocation. The intermediate values are supplied 
to the user’s reduce function via iterator. This allows us 
to handle lists of values that are too large to fit in the 
main memory. MapReduce provides an abstraction that 
involves the programmer defining a “mapper” and a 
“reducer,” with the following signatures [12]:
•	 Map: (value 1, key1) → list (key2, value2)
•	 Reduce: (key2, list (value2) → list (value2).

2.2	 Hadoop and the Hadoop Distributed File System

Hadoop is a popular open source implementation of 
MapReduce, which is a powerful tool designed for 
deep analysis and transformation of very large datasets 
which is inspired by Google’s MapReduce and Google 
File System [10]. It enables applications to work with 
thousands of nodes and petabytes of data.

Hadoop uses a distributed file system called Hadoop 
Distributed File System (HDFS) [13], which creates 
multiple replicas of data blocks and distributes them 
on computer nodes throughout a cluster to enable 
reliability and has extremely rapid computations to 
store data as well as the intermediate results [14]. 
The Hadoop runtime system coupled with HDFS 
manages the details of parallelism and concurrency to 
provide ease of parallel programming with reinforced 
reliability. In a Hadoop cluster, a master node controls 
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a group of slave nodes on which the Map and Reduce 
functions run in parallel.

3.	 Problem Statement

In this section, first we define the problem of maximal 
contiguous frequent pattern mining and then present 
some preliminary knowledge that will be used in our 
algorithm.

Let ∑ = {A, C, G, T} be a set of DNA alphabets where 
A, C, G, and T are called DNA characters or four bases; 
A is for Adenine, C for Cytosine, G for Guanine, and T for 
Thiamine. A DNA sequence S is an ordered list of DNA 
alphabets. S is denoted by <s1, s2…sn> where si ∈ ∑ and 
S denotes the length of sequence S. A sequence with 
length n is called an n-sequence.

A DNA sequence database D is a set of tuples 
<Sid, S> where Sid is a sequence identifier and S is the 
corresponding sequence. A sequence α = <a1,a2,…,an> 
is called contiguous sub-sequence of another sequence 
β = <b1,b2,…,bm> and β is a contiguous super-sequence of 
α, denoted as α ⊆ β, if there exists integers 1≤j1≤j2≤…
≤jn≤m and ji+1=ji+1 for 1≤I≤n-1, such that a1=bj1, 
a2=bj2,…,an=bjn. We can also say that α is contained by 
β. A contiguous frequent sub-sequence X is said to be 
maximal if none of its super-sequence Y is frequent.

Given a DNA sequence database D and a minimum 
support threshold δ, the problem of maximal contiguous 
frequent sub-sequences mining is to find the complete 
set of maximal contiguous frequent patterns from that 
database.

For example, suppose minimum support threshold δ 
is 2 for DNA sequence database in Table 1. Sequence 
<ATCGTGACT> is 9-sequence since its length is 9. 
Sequence <ATCG> is contiguous frequent sub-sequence 
because it is contained by sequences ID 10, 20, and 30. 
S=<CGTGATT> is a contiguous frequent sub-sequence 
of length 7 since both sequence identifier 40 and 50 
contains it. Moreover, it is one of the maximal contiguous 
frequent sub-sequences because there is no contiguous 
frequent super-sequence of <CGTGATT> with minimum 
support 2.

4.	 The Proposed MapReduce Framework

4.1	 Programming Model

Two important functional programming primitives in 
MapReduce are Map and Reduce. The Map function is 
applied on application-specific input data to generate 
a list of intermediate <key, value> pairs. Then, the 
Reduce function is applied to the set of intermediate 
pairs with the same key. The master node assigns a task 

to a slave node that has any empty task slot. Typically, 
computing nodes and storage nodes in a Hadoop cluster 
are identical from the hardware’s perspective [15]. 
Such a homogeneous configuration of Hadoop allows 
the MapReduce framework to effectively schedule 
computing tasks on an array of storage nodes where data 
file are residing, leading to a high aggregate bandwidth 
across the entire Hadoop cluster.

An input file passed to Map functions resides on the 
HDFS on a cluster. After that, HDFS splits the input 
file into even-sized fragments automatically, which are 
distributed to a pool of slaves for further MapReduce 
processing.

4.2	 Proposed Framework

We know that DNA sequence datasets are usually very 
large and the number of items is relatively smaller 
than that of transactional databases. Since every item 
(Nucleotide) is frequent, there is nothing to mean by 
1-itemset; hence, we cannot use MapReduce framework 
directly for mining these kind of datasets as we can 
on transactional databases. Therefore, to deal with 
DNA sequence datasets with MapReduce on Hadoop 
platform, we need special care like handling big data. 
DNA sequence datasets in disk files are splitted into 
smaller segments automatically after they are stored on 
HDFS. The Hadoop components perform job execution, 
file staging, and workflow information storage and use 
the files replace the database to store datasets [13,14].

So, after splitting the DNA datasets into smaller 
segments, the master node assigns task to idle worker 
nodes. Table 2 has shown the input/output schemes for 
the proposed framework. After that, assigned worker 
nodes scan the sequences in smaller data segments as 
<ID, Sequence> pairs and produce <A>, <T>, <C>, and 

Table 1: A DNA sequence database 
Sid Sequence
10 ATCGTGACT
20 CATCGATTG
30 CATCGTGAGA
40 TCGTGATTG
50 GCGTGATTACT

60 AGTCGATTG

Table 2: Key/value for the proposed MapReduce framework
I/O Map-1 Map-2 Reduce-1 Reduce-2
Input: 
Key/value 
pairs

Key: Sid
Value: DNA 
Sequence

Key: Serial
Value: Suffix 

Key: CP
Value: Support 

Key: CFP
Value: Support 

Output:
Key/value 
pairs

Key: Serial
Value: Suffix

Key: Support
Value: CP

Key: CFP;
Value: Support

Key: MCFP
Value: Support
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<G> suffixes with serial number (i.e., suffixes starting 
with four nucleotide A, T, C, and G) as <serial, suffix> 
pairs. This phase is considered as map phase 1. For 
example, for a DNA sequence CTGACT, a worker 
produces five contiguous suffixes with prefix <A>, 
<T>, <C>, and <G> as: ACT, TGACT, CTGACT, CT, 
and GACT and will be written in the local disk using 
serial number as <serial, suffix> pairs. These values are 
inputted to the map phase 2. For our ease, we designed 
the map function such that it takes input as <serial, 
suffix> pairs and perform prefix matching among <A> 
suffixes, then <T> suffixes, <C> suffixes, and finally 
<G> suffixes. For example, if we perform the prefix 
matching for <A> suffixes, then suffix ATTG will match 
up to ATTG of suffix ATTGCT; so, the map function 
will produce three new candidate contiguous suffixes as 
<ATTG, 2> and <ATTGCT,1> pairs, since the support of 
ATTG will be 2. After having all the required suffixes, the 
map function executes on these suffix sequences again 
and generates contiguous candidate suffixes and written 
as <candi_pattern, support> pairs. This is the end of 
map phase 2. These <candi_pattern, support> pairs will 
be treated as intermediate values, where candi_pattern 
indicates a contiguous candidate suffix.

The reduce function adds up all the intermediate values 
and produce a support for candidate contiguous suffixes 
as a one-time synchronization by adding local supports. 
In the reduce phase, each worker needs extra work for 
finding maximal contiguous frequent patterns and it 
is treated as second reduce phase. After having all the 
contiguous frequent patterns by sharing supports of 

Figure 2: Proposed MapReduce framework for mining maximal contiguous frequent patterns.

Figure 1: MCFP algorithm on Hadoop using MapReduce.

MCFP Algorithm on Hadoop MapReduce

Input: A DNA sequence database on HDFS and a minimum support 
threshold δ
Output: The complete set of maximal contiguous frequent patterns
Map Phase: Assigned worker nodes scan the splitted segments and 
maps the output as <candi_pattern, support> pairs
Map Phase-1:
 1. �Generate <A>, <T>, <C>, and <G> suffixes and write  the 

invoked values on the local disk as <serial, suffix> pairs
Map Phase-2:
 2. �Worker nodes take input as <serial, suffix> pairs and maps these 

values as <candi_pattern, support> pairs.
 3. Write the <candi_pattern, support> pairs on the local disks
Reduce Phase: Assigned worker nodes find the complete set of 
MCFPs as <max_pattern, support> pairs
Reduce Phase-1:
 1. �Worker nodes take input as <candi_pattern, support>  pairs and 

share the support of each candidate suffix  with other workers 
and find the set of CFP as  <freq_pattern, support>pairs

Reduce Phase-2: 
 2. �Output from the Reduce phase-1 is inputted to idle  worker 

nodes to check the maximality criteria and write these MCFPs as  
<max_pattern, support> pairs in the output files

different worker nodes as <freq_pattern, support> pairs, 
each worker just checks the maximality criteria among 
the contiguous frequent patterns and writes maximal 
contiguous frequent patterns on the output files as 
<max_pattern, support> pairs.

Actually, in map phase and reduce phase, this algorithm’s 
advantage is that it does not exchange data between 
data nodes, it only exchanges the supports. Figure 1 
describes the algorithm of our proposed approach and 
Figure 2 shows the data flow and the phases of the 
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Table 3: Output suffixes from worker 1 in map phase-I
Serial Suffixes
1-10 ATCGTGACT, ACT, ATCGATTG, ATTG, 

ATCGTGAGA, AGA, ATTACT, AGTCGATTG
11-17 TCGTGACT, TGACT, TCGATTG, TTG, TG, 

TCGTGAGA, TGAGA 
18-23 CGTCACT, CT, CATCGATTG, CGATTG, 

CATCGTGAGA, CGTGAGA

24-29 GTGACT, GACT, GATTG, GTGAGA, GAGA, GA

Table 4: Output suffixes from worker 2 in map phase-I
Serial Suffixes
1-5 ATTG, ATTACT, ACT, AGTCGATTG, ATTG
6-15 TCGTGATTG, TGATTG, TTG,TG, TGATTACT, 

TTACT, TACT, TCGATTG, TTG, TG 
16-19 CGTGATTG, CGTGATTACT, CT, CGATTG

20-23 GTGATTG, GATTG, GCGTGATTACT, GATTACT

Table 5: Intermediate values – From worker 3 in map phase-II
Candi_pattern Support Candi_pattern Support
ACT 1 CT 1
ATCG 3 CGATTG 1
ATTG 1 CGT 2
ATCGTGA 2 CGTCACT 1
ATCGTGAGA 1 CGTGAGA 1
AGA 1 CATCG 2
ATCGTGACT 1 CATCGATTG 1
ATCGATTG 1 CATCGTGAGA 1
TTG 1 GACT 1
TGA 2 GATTG 1
TGACT 1 GAGA 1
TGAGA 1 GTGA 2
TCGTGA 2 GTGACT 1
TCGTGACT 1 GTGAGA 1
TCGTGAGA 1 GA 3

TCGATTG 1 GTG 2

Table 6: Intermediate values – From worker 4 in map phase-II
Candi_pattern Support Candi_pattern Support
ACT 1 CT 1
ATTG 2 CG 3
ATTACT 1 CGATTG 1
AGTCGATTG 1 CGTGATT 2
ATT 2 CGTGATTG 1
TTG 2 CGTGATTACT 1
TTACT 1 GATT 2
TGATTG 1 GATTG 2
TGATT 2 GATTACT 1
TGATTACT 1 GT 2
TCG 2 GTGATTG 1
TCGTGATTG 1 GTCGATTG 1

TCGATTG 1 GCGTGATTACT 1

Table 7: Frequent pattern – Temporary output from worker 
5 in reduce phase-I
Freq_pattern Support Freq_pattern Support
AT 3 CG 6
ATCG 3 CGT 4
AG 2 CT 2
ACT 2 CATCG 2
ATCGTGA 2 CGTGATT 2
ATTG 3 CGATTG 2
TTG 3 GA 5
TGA 2 GTGA 2
TCG 6 GATT 2

TCGATTG 2 GATTG 3

MapReduce framework for mining maximal contiguous 
frequent patterns. Multiple iterations of MapReduce 
computations are necessary for the overall computation. 
The iteration continues until there are not any maximal 
frequent item sets further found.

4.3	 Step-by-step Example

4.3.1	 Map Phase

i.	 Suppose the minimum support threshold is 2 and 
the DNA sequence database are in Table 1 has been 
splitted into two segments with each three sequences; 
sequence 10, 20, and 30 in first segment and sequence 
40, 50, and 60 are in the second segment. Let, worker 
nodes 1, 2, 3, 4, 5 and 6 are idle and the master node 
assigned segment 01 to 1st worker and segment 02 
to 2nd worker. Tables 3 and 4 have shown the suffix 
sequences with serial number using a notation like 

1-5 instead of 1, 2, 3, 4, and 5; for the page limitations. 
These <serial, suffix> pairs are stored on the local disk 
of worker 1 and 2. These values will be used as input 
to the map function in map phase 2

ii.	 Now, in Map phase-2, <serial, suffix> pairs are input-
ted to the mapping function. Then, the map function 
runs the prefix matching among the related suffixes 
and produce results as <candi_pattern, support> 
pairs. Tables 5 and 6 have shown the <candi_pattern, 
support> pairs from two workers.

4.3.2	 Reduce Phase

i.	 In Reduce phase-1, the master node assigns reduce 
task to idle worker nodes. Each worker node takes 
input as <candi_pattern, support> pairs and shares 
the support of contiguous candidate suffix sequences 
and combines the output after that emits the results as 
<freq_pattern, support> pairs and writes the output 
pairs in the local disks. Table 7 has shown the contigu-
ous frequent patterns with corresponding supports 
as <freq_pattern, support> pairs; usually, it takes 
relatively less space since the number of contiguous 
frequent patterns set is small

ii.	 In reduce phase 2, worker 6 checks for  the maximality 
criteria among the <freq_pattern, support > pairs and 
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therefore, writes the complete set of maximal con-
tiguous frequent patterns in the output files. Table 8  
has shown the maximal contiguous frequent patterns 
with corresponding supports as <max_pattern, sup-
port> pairs. Finally, we have six maximal contiguous 
frequent patterns, they are as follows: ACT, AG, 
ATCGTGA, TGATTG, CATCG, and CGTGATT.

5.	 Experimental Results

We used Hadoop version 0.20.0, running on a cluster 
with 6 machines (1 master, 5 workers). Master node 
has 3.7 GHz Intel Core 2 Duo processor with 4 GB of 
RAM and each worker machine has a processor with 
2.60 GHz and 2 GB RAM. All programs were written 
in Java using MapReduce library functions and for this 
we configured the HDFS on Ubuntu-11.04. We applied 
our MapReduce framework on Human genome (Homo 
Sapiens GRCh37.64 DNA Chromosome Part 1) and 
Bacteria DNA sequence datasets downloaded from the 
NCBI website. The Human genome database contains 
112  000 sequences; average length is 60; on the other 
hand, the Bacteria dataset consists of 20 000 sequences 
with average length of 1040 bp. Datasets were splited 
across 3 and 5 worker nodes for the first and second 
experiment respectively; and the load balancing was 
adopted from the literature [15].

We did not compare our results with any existing 
contiguous frequent pattern mining algorithm, since 
all of the previous works were implemented on main 
memory-based single processor machine. Figure 3 shows 
the running time of MCFP algorithm on Bacteria dataset 
and Figure 4 shows the running time of MCFP algorithm 
on Human genome dataset and from the graph, it is clear 
that our MapReduce is fast as well as scalable scalable in 
terms of increasing loads. We speed up the framework by 
adding more worker nodes. Figure 5 shows the running 
time after speeds up the framework by increasing worker 
nodes from 3 to 5. 

6.	 Conclusion

In this paper, we have proposed an efficient approach 
for mining maximal contiguous frequent patterns using 
MapReduce on Hadoop. Our performance study shows 
that our MCFP algorithm can find the complete set of 
maximal contiguous frequent patterns very efficiently. 
The results also indicate the correctness and scalability 
in terms of increasing load. Since, mutations are essential 
to evolution; a mutation is a change in DNA. Hence, 
organism's DNA affects how it looks, how it behaves, 
and its physiology so, a change  in  an organism's DNA  
can cause changes in all aspects of its life. Therefore, in 
future our target is to extend this work by including gaps 
and execute it on real biological datasets.

Figure 3: Runtime with the change of minimum support  
(bacteria dataset).

Figure 4: Runtime with change of minimum support (human 
genome).

Figure 5: Speed up by increasing worker nodes (on human 
genome dataset with 5 worker nodes).
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Table 8: Maximal contiguous frequent patterns – From 
worker 6 in reduce phase-II
Max_pattern Support
ACT 2
AG 2
ATCGTGA 2
TCGATTG 2
CATCG 2

CGTGATT 2
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