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ABSTRACT

The phenomenon of fragmentation and spreading of a high-speed flying object resembling a meteorite is studied
experimentally and theoretically. Experimentally, a model made of graphite is launched in a ballistic range and
is made to fragment and spread. The flow field produced by the cloud of the fragments is observed optically.
The observed deceleration and spreading behavior is numerically reconstructed using computational-fluid-dynamic
calculations, applying an improved meteoroid fragmentation theory. The existing meteoroid fragmentation theory
is improved by introducing the hypothesis that the incubation process of the pressurized fluid permeating through
the fragment precedes the splitting process. The incubation time is determined by the ratio of permeability of
the fragment to the fluid’s viscosity and is much longer than the time for splitting given by the existing theory.
Agreement is obtained between the observed and calculated behavior of the fragment cloud by appropriately
choosing this ratio.
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1. INTRODUCTION

How a meteor breaks up, fragments into small pieces, ablates,
and decelerates has been a subject of serious study in recent
years. Traditionally, this subject has been studied to predict
the damage caused by the impact of a meteor on the ground.
Recently, it gained attention in relation to the question as to
whether the building blocks of life could have been seeded from
outer space.

It is now believed that a meteoroid breaks up first because
of the stresses built up due to the different aerodynamic forces
exerted on different parts of the meteoroid. After the initial
breakup, the aerodynamic interactions between the neighboring
fragments produce aerodynamic forces that push these frag-
ments apart: two supersonic objects located laterally closely
produce a repulsive lateral force between them because of the
interaction of shock waves (Artem’eva & Shuvalov 1996; Zhdan
et al. 2004). Fragmentation continues and the fragments become
smaller as the entry flight progresses, and, consequently, decel-
erates faster. At the same time, the fragments spread. How these
phenomena occur will decide how much damage will be done
to the ground or how likely it is for the extraterrestrial building
blocks of life to survive entry flights.

For this reason, it is desirable that the fragmentation and
spreading phenomena of a hypersonic body be observed in
a ground-based laboratory. By serendipity, such experimental
data were obtained in a ballistic range. In the present work,
these experimental data are presented. The existing theory
on the fragmentation of meteoroids is extended and applied
to numerically recreate the observed data. A computational-
fluid-dynamics (CFD) calculation was made of the flow field
produced by the spatially distributed cloud of fragments.

The rate of fragmentation is seen to be much slower than
predicted by the prevailing theory (Passey & Melosh 1980;
Hills & Goda 1993). In order to reconcile this discrepancy, a
hypothesis was made that the pressurized fluid in the stagnation
region must permeate through a fresh fragment in order to cause
it to split. This time, called incubation time in the present work,
is controlled by the ratio of permeability of the fragment to

the fluid’s viscosity and calculated to be much longer than the
time for it to split mechanically. By choosing this ratio value
appropriately, the present work shows that agreement can be
achieved between the theory and the experimental data obtained
in the ballistic range.

2. BALLISTIC RANGE EXPERIMENT

The aforementioned experiment was conducted at the Hy-
personic Free-Flight Range Facility of NASA Ames Research
Center (Park & De Rose 1980). A model made of industrial-
grade graphite was launched in this facility to a speed of about
4 km s−1. This graphite was made by binding graphite particles
with an organic resin. The model was made to fly through a
chamber filled with krypton or xenon to a pressure of 200 torr.
The purpose of the experiment was to observe the radiation
emitted by the hot krypton or xenon surrounding the model.
Figure 1 shows the general experimental setup.

The rest of the range was filled with air to 100 torr. The
krypton/xenon chamber, located in Region 2 in Figure 1, had
an overall length of 270 cm. A total of 11 shots, Shots 1536
through 1546, were made. Of these, five, Shots 1539 through
1543, were performed with a model made of graphite, which
showed the breaking up and spreading phenomena. The models,
1.905 cm in diameter, were in the shape of the Galileo probe
vehicle, which entered Jupiter in 1995 (Park 2009) and weighed
8 g. The two ends of the krypton/xenon chamber were covered
with a diaphragm made of 0.0127 mm thick Mylar. The models
were launched with a two-stage light-gas gun. The models broke
through the two diaphragms, and, emerging out of the chamber,
flew through the rest of the range designated as Region 3
in Figure 1. Shadowgraph pictures were taken through the
27.5 cm diameter windows located at intervals of 1.524 m.
Flight speed was determined from the locations of the model
determined from the shadowgraphs and the timing record of the
shadowgraphs. For the five shots mentioned, the initial velocity
of the model while inside the Region 2 chamber varied from
3.850 to 4.520 km s−1. Park & De Rose (1980) reported the
phenomenon observed in the krypton/xenon chamber. The flux
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Figure 1. Schematic of ballistic range setup.

Table 1
Measured and Calculated Parameters of Ballistic Range Shot 1543

Known values
Local air density 0.1577 kg m−3

Fragment material density assumed 2000 kg m−3

Fragment total mass 8 × 10−3 kg
Initial fragment radius r0 assumed 3.5 × 10−5 m
Total number of fragments corresponding to assumed r0 2.227 × 107

Number density of fragments corresponding to assumed r0 1.485 × 1011 m−3

At t = 0 s
Distance from reference point 0 m
Measured velocity 4200 m s−1

Fragment cloud radius measured 0.033 m ± 10%
At t = 6.60 × 10−4 s
Distance from xenon chamber exit 1.600 m
Calculated velocity 1636 m s−1

Fragment cloud radius measured 0.055 m ± 10%
At t = 2.78 × 10−3 s
Distance from reference point 3.110 m
Calculated velocity 346 m s−1

Fragment cloud radius measured 0.130 m ± 10%

of radiative power incident in the model and the stagnation
pressure were calculated to be of the order of 200 kW cm−2 and
250 (with xenon) atm.

The parameters of the serendipitous Shot 1543, some mea-
sured and some calculated, are presented in Table 1. In
Figures 2(a) through (d), the shadowgraphs taken in Shot 1543
are shown. In the picture shown in Figure 2(a), the number
1S-1543 signifies that the picture was taken through the side
window in Station 1 in Shot 1543. In Figure 2(a), the model
is intact. In Figure 2(b), a luminosity picture is taken of the
model flying through xenon. The four-level graded image at
the top is a luminosity calibration exposure. There is no pic-
ture at Station 3. For this shot, the shutter on the camera failed
to open, but the arrival time of the model was successfully
captured.

In Figure 2(c), the shadowgraph taken at Station 4 is shown.
Here, the model is broken into small pieces and fragments are
spread over a diameter of the order of 12 cm, six times the
model’s diameter. In Figure 2(d), a cloud is seen at Station 5. The

white appearance signifies that the light is blocked. The blocking
of light is only by solid particles: there is no known optical
absorption by air or possible compound between air and carbon,
i.e., CO and NO, in the visible wavelength range. Therefore, one
can conclude that the fragmentation produced many very small
solid particles: the model was totally pulverized. The diameter
of the fragment cloud is approximately equal to the diameter of
the window, i.e., about 28 cm.

For the four remaining graphite shots, shadowgraphs were
successfully taken at Station 3. One of them, Shot 1540, is
shown in Figure 3. As seen here, the model seems to be
exploding. All four shadowgraphs showed exactly the same
feature. The diameters of the envelopes of the exploding bodies
were nearly the same, 6.6 ± 1.5 cm, roughly 3.5 times the
diameter of the model. It is assumed that the same occurred for
Shot 1543.

Why this “explosion” occurred at the exit of the
krypton/xenon chamber is unknown. One could speculate that
the phenomenon is due to the combination or interaction be-
tween (1) the mechanical shock exerted on the model in break-
ing the Mylar diaphragm on exiting from the chamber, (2) the
sudden drop of the stagnation pressure from 250 atm inside the
chamber to about 25 atm outside the chamber, and (3) rapid va-
porization of the resin within graphite heated inside the xenon
chamber. Somehow, the intense heat and the high pressure pro-
duced by the shock layer in the xenon chamber, and the process
of passing through the diaphragm, caused this initial breakup.
The initial breakup seemingly caused the fragments to fly apart
almost radially. The transverse velocity of the observed cloud at
the outer edge of the cloud is named V0 here. This V0 is unique
to the experiment and cannot be calculated with any existing
theory.

Thus, for Shot 1543, for some reason the model was frag-
mented extensively: no single piece contained any meaningful
fraction of the total mass. The fragments formed a cloud-like ap-
pearance, and the diameter of this cloud expanded. For the other
four shots, the breakup occurred but not so extensively. Figure 4
shows an example. As shown in Figure 4, even though the frag-
mentation is not extensive, the fragments spread laterally. The
distances between the neighboring fragments are substantially
larger than the diameter of each fragment.
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(a) (b)

(c) (d)

Figure 2. Shot 1543. (a) Shadowgraph at Station 1. (b) Luminosity photograph at Station 2. (c) Shadowgraph at Station 4. (d) Shadowgraph at Station 5.

Figure 3. Shot 1540, Station 3.

3. FRAGMENTATION MODELING

In order to simplify the analysis, it is assumed in the
present work that (1) the model was fragmented to form
spheres of the same radius, (2) these spheres are uniformly
distributed spatially, and (3) these spherical fragments move
with a transverse velocity component V that is proportional to
the radial distance from the axis of symmetry R of each fragment.

Figure 4. Shot 1540, Station 9.

The V-value for the outermost fragments at the beginning is V0.
The density of graphite is taken to be 2000 kg m−3. Because
the total mass of the fragments is known to be 8 g, by assuming
the initial (at the exit of xenon chamber) radius of the fragments
r0, the number density and total number of fragments at the
beginning are fixed.

The process of subsequent repeated fragmentation could
be described conceptually by what is termed the “Medusa’s
head” model by Levin & Bronshten (1986), shown in a slightly
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Figure 5. Conceptual description of progressive fragmentation process termed
“Medusa’s head” model (Levin & Bronshten 1986).

modified form in Figure 5. As shown in Figure 5, conceptually,
fragmentation occurs in discrete stages or generations, all
fragments in unison. In this staged generation description, a
generation begets a next generation through one discrete burst.

In reality, fragmentation does not occur in unison: different
fragments have different diameters and so the times for begetting
the next generation differ. For this reason, fragmentation is
assumed to be continuous in the present work, and its rate is
expressed by

d

dt
(lnn) = 1/τ, (1)

where τ is the characteristic fragmentation time constant. This
means that the number density n increases as exp(t/τ ). Baldwin
& Sheaffer (1971) hypothesized that a meteoroid breaks up in
one burst into about eight fragments. The photograph taken
of the Moravka meteorite (Borovicka & Kalenda 2003) shows
seven major fragments, in close agreement with this hypothesis.
In order to reconcile the continuous fragmentation model,
Equation (1), with this hypothesis, one fragmentation event must
be considered to occur in the time span of ln(8) = 2.079 times τ .
To maintain simplicity, this is truncated to 2, so that one burst
of fragmentation is taken to occur over a time span of 2τ : one
fragment splits into e2 = 7.389 fragments in a time of 2τ .

Passey & Melosh (1980) and Hills & Goda (1993) developed
the discrete fragmentation model in finer detail. The original
“Medusa’s head” model assumes that the life span of one
generation consists of the time for splitting, shown as τ2 in
Figure 5. This τ2 is usually very short, and so this hypothesis
led Hills & Goda (1993) to predict that most meteorites will
fragment, decelerate, and ablate away very rapidly. As will be
shown later, the present ballistic range data does not support this
hypothesis: the observed fragmentation rate is much slower.

In order to reconcile this discrepancy, the time for incubation
of the splitting event, τ1, is hypothesized and added in the present
work, as indicated in Figure 5. Thus, according to the present
model,

Generation lifetime = 2τ = τ1 + τ2. (2)

The nature of the incubation phenomenon will differ accord-
ing to the type of the meteoroid and the flight regime. For a
substantially large (larger than, say 1 m) asteroidal meteoroid,
initially the meteoroid will be broken up by the stress caused

(a)

(b)

Figure 6. Conceptual classification of incubation phenomenon. (a) Asteroidal
meteoroid. (b) Cometary meteoroid.

by pressure. Cracks will be generated and air and the prod-
uct of vaporization of the meteoroid will travel through these
cracks, as shown schematically in Figure 6(a). The meteoroid,
consisting mostly of stones and iron, will also melt and pro-
duce liquid substances on its surface, which will flow relatively
slowly along the surface. The phenomenon can be identified
as the incubation process for this flight regime. After the frag-
ments are broken into smaller pieces (say, to sizes of 10 cm),
each fragment will likely be free of cracks. The thermal shock
phenomenon will dominate in this regime. Damage mechanics,
such as that described by Ashby & Sammis (1990), is applica-
ble to these two regimes. Still later, when the fragments attain
subcentimeter sizes, a phenomenon named here the “permeation
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Figure 7. Schematic of the two processes in fragmentation.

phenomenon” will dominate, which will be described in detail
later.

For a cometary meteoroid, a different phenomenon will occur.
When a cometary meteoroid of substantial size enters Earth’s
atmosphere, it is most likely already broken into many lumps,
as illustrated in Figure 6(b), because of the tidal forces of the
Sun and Earth. High pressure will pass through the openings
between the neighboring lumps, called channels in Figure 6(b).
The heat will melt the meteoroid, and the melted part will flow
inside the channels. When the fragment’s size becomes of the
order of 1 m or less, the permeation phenomenon mentioned
above will dominate. By this time, the fragments have been
thoroughly soaked in the melted part of the meteoroid and lack
the rigidity to produce mechanical fracture. Instead, a new high-
pressure melt passes through the body. This process constitutes
the incubation phenomenon in this regime.

The phenomenon of the high-pressure melt passing through
the fragment, depicted schematically in the left side of Figure 7
marked “Incubation process,” is of interest in the present work
because the tiny fragments observed in the ballistic range
experiment described above are in this regime.

According to Passey & Melosh (1980) and Hills & Goda
(1993), the splitting time τ2 can be deduced approximately from
the energy considerations. The force that pushes two fragments
apart sidewise is the aerodynamic force that is approximately
the stagnation pressure times the cross-sectional area of the
fragment. The aerodynamic force exists until the two bodies
are separated by about the radius of the original fragments, as
shown schematically in the right side figure of Figure 7. The
work done in this way can be expressed as

Work = Force × distance

≈ ρU 2
∫ 2r

r

πr2dr = 7

3
πρU 2r,

where ρ is the density of air, U is the flight velocity, and r is
the radius of the fragment before splitting. Equating this work
to the kinetic energy of the fragments, one has (Hills & Goda
1993)

1

2

(
4

3
πρsr

3

)
Vd ≈ 7

3
πρU 2r3, (3)

where ρs is the density of the fragment and Vd is the lateral
velocity after splitting. Solving Equation (3) for Vd, one obtains

Vd =
(

7ρ

2ρs

)1/2

U ≈ 2

(
ρ

ρs

)1/2

U. (4)

Because the force pushing the fragments is ρU 2πr2 and the
mass of the fragment is (4/3)πr3ρs , the equation of motion can
be written as

r
d2r

dt2
= 3

4

ρ

ρs

U 2.

One must solve this equation to obtain the time taken τ2 for
r to increase from r to 2r. However, because this equation is
nonlinear, no closed-form solution can be found. In order to
derive an approximate closed form solution, the equation is
linearized by assuming the factor r in the left-hand side to have
an average value of 1.5r, where r in this case is a fixed value.
Then the solution leads to

τ2 ≈
(

ρs

ρ

)1/2
r

U
. (5)

In the permeation-dominated regime under consideration, the
incubation time τ1 is the time required for the pressurized fluid
in the stagnation region to penetrate into the porous fragment.
According to Darcy’s law, in a steady state, the flow velocity
through a porous medium is describable by

u = −K

μ

dp

dx
,

where K is permeability, μ is the viscosity of the fluid permeating
through the porous body, and p and x are the pressure and
the penetrating distance, respectively. Approximating dp/dx
by −ρU 2/(2r), one has the incubation time τ1 of

τ1 ≈ 2r

u
= μ

K

4r2

ρU 2
. (6)

Thus, τ1 is inversely proportional to the ratio K/μ. A similar
result was found by Shuvalov & Trubetskaya (2010): using
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a detailed computer code named SOVA, they found that the
so-called internal friction influences the deformation of a
damaged meteoroid. The ratio K/μ is left in the present work as
an adjustable parameter and varied until the theory agrees with
the experiment.

As mentioned, the lateral velocity of the fragments increased
in one stage of fragmentation, i.e., over a time span of 2τ , which
is given by Equation (4). Over the time span of Δt , the increment
in the lateral velocity of a fragment, ΔVd , becomes

ΔVd = 2

(
ρ

ρs

)1/2

U
Δt

2τ
.

In reality, this value must be divided by two, because Vd is the
velocity relative to other fragments instead of the original body
depicted in the right side figure in Figure 7,

ΔVd = 1

2

(
ρ

ρs

)1/2

U
Δt

τ
. (7)

Equation (7) applies to the fragment located at the outer edge
of the fragment cloud. For the fragments inside the cloud, one
can assume a proportional distribution. By denoting the lateral
distance by R and its edge value by Re, one can write

ΔV = ΔVd × R

Re

= 1

2

(
ρ

ρs

)1/2

U
Δt

τ

R

Re

. (8)

4. FLOW-FIELD MODELING

As mentioned, we consider an aggregate of small fragments
in which the fragments are separated by distances larger than
the diameters of the fragments. The aggregate of the fragments
will henceforth be called the fragment cloud. The fragments
inside the fragment cloud are flying through the air at a high
speed. Each fragment will generate a bow shock wave, which
will extend to some distances downstream, as can be seen in
Figure 2(a). Drag is produced by this phenomenon. At a large
distance downstream of the fragment, the lingering effect of one
fragment will be a decrease in the momentum of the air flow
in the direction of motion. The momentum decrement per unit
volume will equal the sum of the drag forces produced by all
fragments contained in the volume.

Assuming that the distances between neighboring fragments
are large, there will be no sidewise forces between neighboring
fragments. However, sidewise force will be generated indirectly
though weakly. The flow momentum change in the flow direc-
tion will produce a non-uniform flow over the fragment cloud:
pressure will be high in the middle of the cloud and low in the
periphery of the cloud. The resulting pressure gradients will
generate sidewise forces to the fragments.

The radii of the fragments r and number density of the
fragments n are taken to be functions of location. They are
assumed initially to be the same everywhere inside the cloud.
The cloud is assumed to have a spherical shape in the beginning;
it changes shape during the flight, but is assumed to remain
axially symmetric throughout.

For a meteoroid in the atmosphere, the flow formed by the
fragment cloud will be very hot. Dissociation and ionization
phenomena must be considered for that flow. However, for
the ballistic range experiment in the present work, the flow
properties, i.e., pressure and density, can be approximated by the
perfect gas assumption for the following reasons: Even though

the starting velocity was about 4 km s−1, the model decelerated
rapidly and flew most of the observed range at a low hypersonic
or supersonic speed. The fragments were too small to produce
an equilibrium region behind their individual bow shock waves,
and so the molecules hitting the fragment’s surfaces were N2
and O2. Therefore, no oxidation or nitridation was possible.
Radiative heating was negligible. The convective heating rates
were such that the radiation equilibrium temperature, i.e., the
temperature at which the convective heat transfer rate and
the blackbody radiation flux are equal, remained below the
sublimation temperature. As a result, sublimation was also
negligible. Thus, no ablation occurred for the fragments in the
ballistic range experiment.

To determine the forces acting on each fragment, CFD
calculation is carried out. From the velocity vectors calculated
in this manner, magnitude and direction of the drag force of the
fragment located at the grid point are calculated. The drag of one
fragment at the grid point times the local number density n gives
the drag force applied to the flow per unit volume around that
grid point. Drag force is calculated from the radius of fragment
r assuming a drag coefficient of unity. Thus,

Drag per unit volume = 1

2
ρW 2πr2n,

where W is the magnitude of the air-relative velocity.
The motion of the fragment is calculated by integrating the

equation of motion of the fragment. At a chosen Δt later, the
fragment cloud is at a different location and has a different
velocity. The CFD calculation is repeated at this new condition,
and so on. A simple trapezoidal integration is performed in the
integration of the equation of motion for each fragment.

The flow field over the cloud of fragments is calculated nu-
merically by solving a modified Euler equation for an axisym-
metric flow. For the momentum equation, the right-hand sides
contained the drag force caused by the fragment cloud. The tan-
gential and transverse components of this drag force constitute
the right-hand sides of the two momentum equations.

The boundary conditions are: (1) the inflow is the freestream;
(2) along the axis of symmetry, the symmetry assumption is
applied; (3) along the outer edge, the freestream conditions are
imposed; and (4) along the exit line, the well-known supersonic
outflow condition is applied.

Two different computer codes were used in the present
work. The first is a generic hypersonic flow solver using an
AUSM-DV scheme and the lower–upper Gauss–Seidel sweep
method widely used within the aerospace community (e.g.,
Yamamoto 2004), which is named here, for the purpose of
identification, METEOR. This code assumes that the flow is
steady, and a time-asymptotic solution is sought. The viscous
part of the code was turned off and the code was run as an
inviscid flow solver. No artificial damping mechanism is added.
The size of the grid was 61 × 151. The Courant–Friedrich–Levy
(CFL) number was set at 0.001. Thirty-one time steps were made
along the flight path. The computation was made on a personal
computer equipped with four central processing units. 50,000
iterations were made at each time point. A total of 7.5 hr was
expended to obtain a solution for the 31 time points. The runs
were successful, and the results were used in the present work.

The second code used is the ZEUS code, which is widely
used within the astrophysics community (e.g., Stone & Norman
1992). This code is for an inviscid flow and is time accurate.
Artificial viscosity is added to stabilize the solution. A minor
modification was made to the code to solve the present problem.
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Figure 8. Flow behavior at the exit of xenon chamber; r0 = 3.5 × 10−5 m, V0 =
20 m s−1, and K/μ = 3.0 × 10−12 m4 (N s)−1. (a) Fragment volume fraction.
(b) Pressure. (c) Mach number.

(A color version of this figure is available in the online journal.)

The modification consisted of adding a “dusty flow” option to
the several options already available in the code. The meteor
fragments are considered to be very small dust particles, and
the drag produced by these particles is accounted for in the
way described above. A grid with 256 mesh points in the axial
direction and 128 mesh points in the radial direction was used.
The CFL number was varied from the recommended value of
0.5 to an extreme value of 0.001. The computation was also
made on a personal computer. A clock time of about 30 minutes
was expended for a single case. As will be described later, the
runs were not successful.

5. RESULTS FROM METEOR CODE

The problem at hand has three unknown parameters: (1) the
initial radius of fragments r0, (2) the initial spreading velocity
V0, and (3) the ratio K/μ. These three parameters are changed
in a trial-and-error fashion to arrive at the values that most
closely reproduce the experimental data. This selection process
is aided by the knowledge that (1) r0 mainly controls how fast
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(A color version of this figure is available in the online journal.)

the fragments decelerate, (2) V0 mainly controls the width of the
fragment cloud at the distance of 1.5 m downstream of the xenon
chamber exit (see Figure 2(c)), and (3) K/μ mainly controls the
width of the fragment cloud at the distance of 3 m downstream
of the xenon chamber exit (see Figure 2(d)).

The results of the METEOR code are as follows. The best
values chosen are: 3.5 × 10−5 m for r0, 20 m s−1 for V0, and 3 ×
10−12 m4 (N s)−1 for K/μ. Table 1 summarizes the characteristic
values derived from these three parameters. In the following, the
process of determining these values is explained.

An example of the calculated flow fields is shown in
Figures 8(a)–(c). These figures show the distribution of frag-
ment volume fractions, pressure distribution, and Mach number
distribution at the xenon chamber exit. These figures show that
a flow field resembling that over a solid body develops. The
solution is seemingly rough in the afterbody region. This is
probably due to the oscillation. The afterbody flow is possibly
unsteady. The present procedure of seeking a time-asymptotic
steady-state solution may suffer from this intrinsic unsteadiness
of the afterbody flow. Fortunately, this unsteadiness does not
affect the location and width of the fragment cloud being sought
here.

Figure 9 shows the variation of the calculated total number of
fragments and the two process times, τ1 and τ2, along the flight
path for the chosen parameter set. The total number increases by
an order of magnitude within the observed 3 m. The incubation
time τ1 is orders of magnitude larger than the splitting time
τ2. This is the main difference between the model of Hills &
Goda (1993) and the present work. The Hills & Goda model
hypothesized that the fragmentation time equals the splitting
time τ2. That model would dictate that the total number of
fragments will increase much more rapidly than calculated
in the present work, and will disagree with the experimental
observation.

Figure 10 shows the convergence behavior of the CFD
solutions. As shown in the figure, the convergence is not very
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good. This is probably again due to the fact that the flow
oscillates in the downstream region.

In Figure 11, the calculated positions of the fragment cloud
are compared with the experimental data for two different values
of r0, 3.5 × 10−5 and 7.0 × 10−5 m, while V0 and K/μ are kept
fixed. The calculations for r0 smaller than 3.5 × 10−5 m are
not shown because those cases led to a divergence of number
densities and consequently no meaningful CFD solutions. As
can be seen, the experimental data are fitted with r0 of 3.5 ×
10−5 m. Several solutions are also obtained with different values
of V0 and K/μ while maintaining r0 = 3.5 × 10−5 m. All such
solutions gave results close to the one shown.

In Figures 12(a)–(c), the calculated values of the radius of
the fragment cloud are compared with the experimental data
while r0 is fixed as 3.5 × 10−5 m. In Figure 12(a), K/μ is
varied while V0 is fixed. As can be seen, the K/μ value of 3.0 ×
10−12 m4 (N s)−1 fits the experimental data best. In Figure 12(b),
V0 is varied. As can be seen, V0 = 20 m s−1 best fits the
experimental data. In Figure 12(c), an effort is made to fit the
experimental data by simultaneously varying K/μ and V0. As
is shown, no such combination of values significantly different
from the chosen values can be found.

6. RESULTS FROM THE ZEUS CODE

The ZEUS code calculates the temporal changes in the flow
field accurately. To do so, the time step is changed automatically
in the code. For the present problem, the time step decreases
steadily until it reaches unrealistically small values, presumably
because of the intrinsically unsteady nature of the flow field. At
a certain point, the numerical truncation errors overwhelm and
the code stops citing an excessively large number of errors.

What happens at the point of stopping can be seen in
Figure 13, which shows the pressure distribution. This figure
contrasts to Figure 8(b), which shows the pressure distribution
calculated by the METEOR code. The general features of the

6

4

2

0

-2

D
is

ta
n

c
e

 f
ro

m
 t

h
e

 e
x
it
 o

f 
x
e

n
o

n
 c

h
a

m
b

e
r,

 m

4x10-33210-1
Time from exit of xenon chamber, s

   Distance traveled by fragment cloud in Shot 1543
 Experiment
 Calculation, V0 = 20 m/s, K/μ = 3.0e-12 m4/(N-s)

r0 = 3.5e-5

r0 = 7.0e-5

Figure 11. Position of the fragment cloud for different r0; V0 = 20 m s−1 and
K/μ = 3.0 × 10−12 m4 (N s)−1.

(A color version of this figure is available in the online journal.)

flow field are similar between the two solutions. However, in
the ZEUS solution, a complicated flow field develops in the
central region of the fragment cloud, and the pressure climbs to
a high value therein. Such high pressure cannot be physically
real and is believed to be due to some unknown problems in the
code such as artificial viscosity. Artificial viscosity was varied
in the calculation from the recommended value of 2 to 0.2, 1,
and 4. The stopping time points were earlier with these different
artificial viscosity values. The CFL number was varied from
the recommended value of 0.5 to as low as 0.01. No difference
was seen. An effort must be undertaken in the future by persons
more familiar with this code to remove this obstacle before the
code can be used for this problem.

7. DISCUSSION

In the present work, the two characteristic times for fragmen-
tation, τ1 and τ2, are derived using simple assumptions. To be
more precise, one could introduce adjustable multiplicative fac-
tors for these two times if one had more experimental data to
calibrate those factors with. In the absence of such experimental
data, such finer adjustment would seem unwarranted. One hopes
that more experiments of the kind described in the present work
will be made in the future to enable calibration of a more precise
theoretical model.

For the graphite model tested in the present work, the most
likely value of K/μ is found to be 3 × 10−12 N s m−4.
What this value implies is now examined. When heated, the
industrial-grade graphite used in the ballistic range experiment
loses its volatile resin component by evaporation and becomes
porous. At room temperature, water has a viscosity of about 2 ×
10−3 N s m−2. The melted liquid of the resin binding the
graphite model may have a somewhat higher viscosity, perhaps
10−2 N s m−2. The K/μ value of 3 × 10−12 implies a K-value
of about 3 × 10−14 N s m−2. This value of K is that of a typical
rock. The graphite used in the experiment when heated and
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(A color version of this figure is available in the online journal.)

thereby made porous may have such a value of K, and therefore
the K/μ value deduced in the present work seems plausible.

A question arises as to whether the fragment is internally
empty prior to permeation of the pressurized fluid, i.e., whether
the void inside the fragment is filled with a liquid. A freshly cut
fragment should be considered empty because the pressure built
up during the preceding generation is likely to be discharged
during the process of splitting.

The present results show that the fragmentation rate is dictated
mostly by what is called an incubation time. The incubation
time is hypothesized in the present work to be the time for

the pressurized fluid to permeate through the fragment and
thus cause its inflation and fracture. As shown in Figure 9,
if this incubation time is not accounted for, then fragmentation
is predicted to occur with an orders-of-magnitude-faster rate
than observed. Because τ1 scales as r2 while τ2 scales as r, the
incubation time will tend to become more dominant for larger
meteoroids. As mentioned, this theory applies only to relatively
small bodies.

Although the motivation for the present work was to pre-
dict the behavior of cometary meteoroids, the experimental
sample, graphite, more resembles a stony asteroidal meteoroid.
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However, the principle of fragmentation developed here should
be equally applicable to cometary meteoroids.

For stony asteroidal meteoroids, K/μ can be determined
from the samples collected on the ground. No such samples
of cometary meteoroids can be obtained. Cometary meteoroids
are believed to consist of a mixture of dust particles and frozen
gases. One could perhaps estimate the value of K/μ from the
values known for packed snow. For example, melting snow
has a K value between 10−9 and 4 × 10−9 m2 (Colbeck &
Anderson, 1982). The viscosity of liquid nitrogen is about
10−4 N s m−2. Assuming that this viscosity value for the fluid
permeates through a cometary fragment, for a fragment 1 m in
radius at an altitude of 40 km moving with a speed of 30 km s−1,
the incubation time τ1 is about 0.1 s. This leads to a much larger
survival rate of cometary meteoroids than predicted by Hills
& Goda (1993). One might synthesize a comet-like material
in a laboratory, and measure its K/μ. In any case, the present
incubation time model should lead to more realistic values of
the survival rates of cometary meteoroids.

Finally, it is interesting to examine the initial splitting velocity
value deduced from the present ballistic range experiment, V0,
of 20 m s−1. One can express the splitting velocity in the form

Vd = C

(
ρ

ρs

)1/2

U.

Equation (4) assigned C = 2. The deduced value of 20 m s−1

corresponds to C = 1.25. Passey & Melosh (1980) deduced,
from the sizes of the craters, C = √

1.5 = 1.22. Artem’eva &
Shuvalov (2001) derived, through CFD calculations, C = 0.5.
Thus, the present 20 m s−1 value is well within the expected
range.

8. CONCLUSIONS

The experimental data obtained in a ballistic range show that
fragmentation occurs at a much slower rate than predicted by
the existing theory. A new hypothesis saying that the incubation
process precedes the splitting process and that the incubation
time is the time for the pressurized fluid to permeate through the
fragment predicts a much slower fragmentation than predicted
by the existing theory, at least for small fragments, and leads to
a better agreement between the experiment and the calculation.

The authors express their sincere thanks to Dr. W. I. Nakano
of Institute of Fluid Sciences, Tohoku University, Sendai, Japan,
and Dr. J. Kim of University of Michigan for the help rendered
in running and modifying the ZEUS code.

APPENDIX

NOMENCLATURE

K Permeability, m2

n Local number density of fragments, m−3

p Pressure, Pascal

r Radius of a fragment, m

r0 Radius of fragments at start, m

R Fragment’s distance from axis of symmetry, m

Re Value of R at the outer edge of fragment cloud, m

t Time, s

u Velocity of permeating fluid, m s−1

U Laboratory-relative axial velocity of a fragment, m s−1

V Laboratory-relative normal velocity of a fragment, m s−1

Vd Velocity gained by a fragment by splitting, m s−1

V0 The V-value at the outer edge of fragment cloud at start,
m s−1

x Axial distance within a fragment, m

W Magnitude of the relative velocity between air flow and
fragment, m s−1

Δt Time intervals along meteoroid trajectory, s

μ Viscosity, N s m−2

ρ Local air density, kg m−3

ρs Density of fragment, kg m−3

τ Characteristic time for fragmentation, s

τ1 Fragmentation incubation time, s

τ2 Fragment splitting time, s
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