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Fidelity of quantum teleportation through noisy channels
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We investigate quantum teleportation through noisy quantum channels by solving analytically and numeri-
cally a master equation in the Lindblad form. We calculate the fidelity as a function of decoherence rates and
angles of a state to be teleported. It is found that the average fidelity and the range of states to be accurately
teleported depend on types of noises acting on quantum channels. If the quantum channels are subject to
isotropic noise, the average fidelity decays to 1/2, which is smaller than the best possible value of 2/3 obtained
only by the classical communication. On the other hand, if the noisy quantum channel is modeled by a single
Lindblad operator, the average fidelity is always greater than 2/3.
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Quantum teleportation@1,2# is a process by which a
sender, called Alice, transmits an unknown quantum stat
a remote recipient, called Bob, via dual classical and qu
tum channels. Here a pair of maximally entangled partic
forming a quantum channel, should be used for the per
quantum teleportation. However, while being distributed a
kept by Alice and Bob, an entangled state may lose its
herence and become a mixed state due to the interaction
its environment.

Bennettet al. @1# noted that the quantum channel that
less entangled reduces the fidelity of teleportation, and/or
range of states that can be accurately teleported. Popesc@3#
investigated the relations among teleportation, Bell’s
equalities, and nonlocality. It was demonstrated that there
mixed states that do not violate any Bell-type inequality, b
still can be used for teleportation. Horodeckiet al. @4#
showed that any two mixed spin-1

2 states that violate the
Bell-CHSH inequality are useful for teleportation. Als
Horodeckiet al. @6# proved the relation between the optim
fidelity of teleportation and the maximal singlet fraction
the quantum channel. Banaszek@7# investigated the fidelity
of quantum teleportation using nonmaximally entang
states. Ishizaka@8# studied the quantum channel subject
local interaction with two-level environment. Although th
studies cited above reveal the important relations betw
the degree of entanglement of the quantum channel
quantum teleportation, there seem to be little studies on
direct connection between the quantum teleportation and
coherence rates. Thus it might be interesting to know h
the type and strength of noise acting on quantum chan
affect the fidelity of quantum teleportation.

In this paper, we investigate quantum teleportat
through noisy channels by solving analytically and nume
cally a master equation in the Lindblad form. We obtain t
fidelity of quantum teleportation as a function of decoh
ence time and angles of an unknown state to be telepo
Thus we explicitly demonstrate Bennettet al.’s argument
that noisy quantum channels reduce the range of states
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accurately teleported. We also examine the characteristic
pendence of the average fidelity on types of noises acting
qubits at each stage of the teleportation.

Let us consider quantum teleportation through no
channels as illustrated in Fig. 1. The top two qubits are ta
by Alice and the bottom qubit is kept by Bob. Here, me
surements are performed at the end of the circuit for com
tational convenience. Classical conditional operations can
replaced with corresponding quantum conditional operati
@9#. Decoherence of an open quantum system is due to
interaction with its environment. Under the assumption
Markov and Born approximations and after tracing out t
environmental degrees of freedom, the dynamics of an o
quantum system is described by a master equation for
density operator of the quantum system alone,r(t), in the
Lindblad form @10,11#
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where the Lindblad operatorLi ,a5Ak i ,a(t) sa
( i ) acts on the

i th qubit and describes decoherence. Throughout this pa
sa

( i ) denotes the Pauli spin matrix of thei th qubit with a
5x,y,z. The decoherence time is approximately given
1/k i ,a . We could control noise by switchingk i ,a(t) on and
off. We take the Hamiltonian of a qubit system as an id
model of a quantum computer, which is given by@12#

FIG. 1. A circuit for quantum teleportation through noisy cha
nels. The two top lines belong to Alice, while the bottom one b
longs to Bob.M represents measurement. The dotted boxesA, B, C,
and D denote noisy channels. Time advances from left to rig
During the time interval corresponding to the width of the dott
box, the Lindblad operator is turned on.
©2002 The American Physical Society16-1
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HS~ t !52
1

2 (
i 51

N

B( i )~ t !•s( i )2(
iÞ j

Ji j ~ t !s1
( i )s2

( j ) , ~2!

where s( i )5(sx
( i ) ,sy

( i ) ,sz
( i )) and s6

( i )5 1
2 (sx

( i )6 isy
( i )). In

solid-state qubits, various types of couplings between qu
i and j are possible such as theX-Y coupling given above,
the Heisenberg coupling, and the Ising couplingJi j sz

( i )sz
( j )

in nuclear magnetic resonance. The various quantum gat
Fig. 1 could be implemented by a sequence of pulses, i.e
turning on and offB( i )(t) andJi j (t). We develop the simu-
lation code that solves Eq.~1!, the set of differential equa
tions for the density matrixrmn(t), based on the Runge
Kutta method@13#. Equation ~1! shows Trr(t)51 at all
times.

An unknown state to be teleported can be written
uc in&5au0&1bu1& with uau21ubu251. It is convenient to
rewrite uc in& as a Bloch vector on a Bloch sphere,

uc in&5cosS u

2Deif/2u0&1sinS u

2De2 if/2u1&, ~3!

whereu and f are the polar and azimuthal angles, resp
tively. The maximally entangled state of two spin-1

2 particles
shared and kept by Alice and Bob is given by

ub00&[
1

A2
~ u00&1u11&). ~4!

The input state of the quantum teleportation circuit in Fig
is the product state ofuc in& and ub00&. After the implemen-
tation of the quantum circuit of Fig. 1 and the measurem
of the top two qubits, Bob gets the teleported stateucout&. It
is useful to describe the teleportation in terms of dens
operators

rout5Tr1,2$U tel r in^ renU tel
† %, ~5!

wherer in5uc in&^c inu, ren5ub00&^b00u, and Tr1,2 is a partial
trace over qubits 1 and 2. The unitary operatorU tel is imple-
mented by the teleportation circuit as shown in Fig. 1. If t
teleportation is ideal, the density-matrix teleportedrout is
identical tor in up to the normalization factor.

As illustrated as dotted boxes in Fig. 1, we consider fo
different noisy channels,A, B, C, and D. In caseA an un-
known stateuc in& loses its coherence and becomes a mix
state before it is teleported. In caseB an entangled pair
forming a quantum channel, becomes noisy while be
shared and kept by Alice and Bob. In casesC andD, while
Alice and Bob perform the Bell measurement and the unit
operation, respectively, noise may set in. For casesA andB
we obtain both analytic and numerical solutions of Eq.~1!,
while in casesC andD the numerical solutions of Eq.~1! are
obtained. For our numerical calculation,k i ,a(t) is turned on
for the time intervalt corresponding to the width of eac
dotted box in Fig. 1.

The properties of quantum teleportation through no
quantum channels are quantified by the fidelity that meas
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the overlap between a stateuc in& to be teleported and the
density operatorrout for a teleported state,

F~u,f!5^c inuroutuc in&. ~6!

Here the fidelityF(u,f) depends on an input state as well
the type of noise acting on qubits. We calculateF(u,f) and
determine the range of statesuc in& which can be accurately
teleported. Since in general a state to be teleported is
known, it is more useful to calculate the average fidel
given by

Fav5
1

4pE0

p

duE
0

2p

df F~u,f!sinu, ~7!

where 4p is the solid angle.
Case A: States to be teleported are mixed.Alice is not

able to know or copy the state to be teleported without d
turbing it. So it may be pure or mixed. As Bennettet al. @1#
noted, the linear property of quantum teleportation enab
one to teleport not only a pure state but also a mixed st
The quantum operationE transforms a pure stater in
5uc in&^c inu to a mixed stateE(r in). The time evolution of
pure states to mixed states is described by Eq.~1! ~see Ref.
@9# for the connection between the two approaches!. From
Eq. ~5!, quantum teleportation of mixed states reads

E~rout!5Tr1,2$U tel E~r in! ^ renU tel
† %. ~8!

The decoherence of the state to be teleported,E(r in), is trans-
ferred to the state teleported,E(rout). For various types of
noises, we obtain both analytic and numerical solutions
Eq. ~1! and calculate the fidelity.

Suppose a state to be teleported is subject to the n
L1,z . It is easy to find the analytic solution of Eq.~1! when
HS(t)50. We obtain the mixed state to be teleported,E(r in),
as r (00)(t)5r in

(00)(0), r (11)(t)5r in
(11)(0), and r (01)(t)

5r in
(01)(0)exp(22kt). Then from Eqs.~8! and~6!, the fidelity

can be calculated as

F~u,f!512
1

2
~12e22kt!sin2u. ~9!

If 2kt!1, F(u,f).12ktsin2u. On the other hand, if
2kt@1, F(u,f). 1

2 (11cos2u). Figure 2~a! is the plot of
Eq. ~9! for 2kt53.0.

Let us consider that the stateuc in& is subject to the noise
described byL1,x . After some calculations, we obtain th
fidelity

F~u,f!5
1

2
@11sin2u cos2f1e22kt~cos2u1sin2u sin2f!#.

~10!

If 2kt!1, F(u,f).12kt(cos2u1sin2u sin2f). In the limit
of 2kt@1, we haveF(u,f). 1

2 (11sin2u cos2f). The plot
of Eq. ~10! at 2kt53.0 is shown in Fig. 2~b!.

Substituting Eq.~10! or ~9! into Eq. ~7!, we get the aver-
age fidelity
6-2
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Fav~t!5
2

3
1

1

3
e22kt. ~11!

In Fig. 3, the solid line~denoted by caseA-1! shows the plot
of Eq. ~11!, the average fidelity as a function ofkt for the
noise modeled byL1x or L1z .

Now suppose the isotropic noise (L1x ,L1y , and L1z! is
applied to the stateuc in&. The analytic solution of Eq.~1!
gives us the fidelity written by

Fav5F~u,f!5
1

2
1

1

2
e24kt. ~12!

If 4kt!1, F(u,f).122kt. For 4kt@1, we have
F(u,f). 1

2 , as shown in Fig. 2~c!. In Fig. 3, the dotted line
~denoted by caseA-2! is the plot of Eq.~12!.

Case B: Quantum channels are noisy. While being dis-
tributed and stored by Alice and Bob, an entangled state
two spin-12 particles may be subject to noise. The dynam
of an entangled pair subject to quantum noise is describe
the quantum operationE acting on the pure entangled stat

FIG. 2. FidelityF(u,f) as a function of anglesu andf of the
state to be teleported for caseA at 2kt53.0 and for caseB at
4kt53.0. For caseB in ~a!, the Lindblad operatorsL2,z andL3,z ,
and in ~b!, L2,x andL3,x are turned on. The maximum value of th
fidelity of ~a! and~b! is 1 and the minimum is 1/2. The contours o
the u2f planes in~a! and ~b! join the points with the fidelities
F(u,f)53/4 and 2/3, respectively. In~c!, the isotropic noise is
applied.
02231
of
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ren→E(ren), or by Eq.~1!. From Eq.~5!, the quantum tele-
portation with noisy quantum channels can be written as

E~rout!5Tr1,2$U telr in^ E~ren!U tel
† %. ~13!

We find that the quantum teleportation process transfers
decoherence of the entangled pairE(ren) to that of the output
stateE(rout). It should be noted that the quantum operati
acting on the entangled pairE(ren) is not only a 434 matrix,
but effectively a 232 matrix. Thus overall features of caseB
are similar to caseA except the decoherence rates.

Consider the quantum channel subject to the noise ac
in one direction, for example, thez direction. This type of
noise is modeled by Lindblad operatorsL2,z5Ak2,z sz

(2) and
L3,z5Ak3,z sz

(3) acting on an entangled pair, qubits 2 and
respectively. Here we assume the same strength of deco
ence rates,k[k2,z5k3,z . We obtain the fidelityF(u,f)
with the same form of Eq.~9! except the replacement of 2kt
with 4kt. That is,F(u,f)512 1

2 @12exp(24kt)#sin2u. For
the noise described byL2,x andL3,x , the fidelity F(u,f) is
identical to the form of Eq.~10! with exponent 4kt.

Let us discuss Bennettet al.’s argument: the imperfec
quantum channel reduces the range of stateuc in& that is ac-
curately teleported@1#. Figure 2 shows the fidelityF(u,f)
for various types of noises at 4kt53.0. For the noisy chan
nel defined byL2,z and L3,z , the fidelity F(u,f) is always
the maximum value of 1 atu50,p, irrespective ofkt as
depicted in Fig. 2~a!. These angles indicate statesu0& and
u1&, which are eigenstates ofsz . From F(u,f). 1

2 (1
1cos2u) in the limit of 4kt@1, the range of states to b
teleported with fidelityF>3/4 is determined by 0<u<p/4
and 3p/4<u<p. The teleported states with fidelity 2/3 ar
in the region determined by cosu>1/A3 or cosu<21/A3.
When L2,x and L3,x are applied to qubits 2 and 3, we g
F(u,f)51 at u5p/2 and f50,p for 4kt@1, which
shown in Fig. 2~b!. These angles represent statesuc&
5(1/A2)(u0&1u1&) and uc&5(1/A2)(u0&2u1&), i.e., eigen-

FIG. 3. Average fidelityFav as a function ofkt for casesA and
B. The solid line~caseA-1! is the plot of Eq.~11! for the noise
described byL1,x ~or by L1,z). The dotted line~caseA-2! is based on
Eq. ~12! corresponding to the isotropic noise. The dashed line~case
B-1! is for Eq. ~14!, the noise modeled byL2,x andL3,x ~or by L2,z

andL3,z). The dash-dotted line~caseB-2! is the plot of Eq.~15! for
the isotropic noise. The horizontal dotted line with 2/3 shows
maximum fidelity obtained only by the classical communication
6-3



i

d
.

ng
n

ic

ct
ra
-

n
A
e
ic
ts

ic
ti
tu

th
-
a

ox

ia
be

a

te

-

e
o
yt
ob

a-
l
wo-

s

ce

xi-

e

l
m

SANGCHUL OH, SOONCHIL LEE, AND HAI-WOONG LEE PHYSICAL REVIEW A66, 022316 ~2002!
states ofsx . The range of states accurately teleported
depicted by contours in Figs. 2~a! and 2~b!.

When the quantum channel is subject to noise in one
rection, we obtain the average fidelity as depicted in Fig
~denoted by caseB-1!

Fav~t!5
2

3
1

1

3
e24kt. ~14!

The average fidelity decays exponentially to the limiti
value of 2/3. This is the best possible score when Alice a
Bob communicate with each other only through the class
channel@3,5#.

Consider the case where the quantum channel is affe
by isotropic noise, which is described by six Lindblad ope
tors,L2,a andL3,a with a5x,y,z. Then the analytic calcula
tion of the fidelity can be written by

Fav5F~u,f!5
1

2
1

1

2
e28kt. ~15!

As depicted in Fig. 2~c!, the fidelity F(u,f) is independent
of angles of input states,u andf, for any value ofkt. For
the quantum channel subject to isotropic noise, one could
find the range of states that is accurately teleported.
shown in Fig. 3~caseB-2!, the average fidelity decays to th
value of 1/2. The number 1/2 can be obtained when Al
and Bob cannot communicate at all and Bob merely selec
state at random.

It should be noted that except decoherence rateskt, the
overall features of casesA andB are identical. This implies
that if a state to be teleported is realized by a single part
and not by an ensemble, one may not be able to iden
whether the state to be teleported is mixed or the quan
channel is noisy.

Cases C and D: Noise during Bell’s measurement or
unitary operation. When Alice performs the Bell’s measure
ment or Bob does the unitary operation on his particle of
entangled pair, noise may take place as depicted by the b
C or D in Fig. 1. In contrast to casesA andB, it seems to be
difficult to find analytic solutions of Eq.~1! for casesC and
D because of the time dependence of the qubit Hamilton
HS(t). Alice’s Bell measurement on qubits 1 and 2 could
done by a controlled-NOT gate~CNOT! on qubits 1 and 2, and
a Hadamard gateH1 on qubit 1 as shown in Fig. 1. With
qubit system modeled by Hamiltonian, Eq.~2!, the
CNOT gate acting on qubits 1 and 2 could be implemen
by the pulse sequence@12,13# e2 ip/4H1R2x(p/2)R1x

(2p/2)U2b
12(p/4)R1x(p)U2b

12(p/4)H1. Here Rjx(u)

[eisx
( j )u/2 is a rotation of qubitj by angleu about thex axis.

A two-qubit operationU2b
12(u) on qubits 1 and 2 is imple

mented by turning on the couplingJ12 for a time t corre-
sponding tou[J12t/\. During each qubit operation, th
noise modeled by Lindblad operators is also switched
Thus, it does not seem to be simple to obtain an anal
solution and we take a numerical method to solve the pr
lem.

Consider the noise modeled by the Lindblad operatorsL1z
and L2z for caseC and L3z for caseD. Here the noise is
02231
s

i-
3

d
al

ed
-

ot
s

e
a

le
fy
m

e

n
es

n

d

n.
ic
-

switched on during the time intervalt corresponding to the
total operation time that it takes to implement Bell’s me
surement or controlledX andZ operations. The time interva
t depends on the operation times of a single gate or a t
qubit gate, proportional toh/uB( i )u and h/Ji j , respectively.
Figure 4 shows the fidelityF(u,f) as a function of angleu
for various values ofkt. In contrast to the previous case
~casesA-1, A-2, B-1, andB-2! whose fidelity is given by Eq.
~9! or ~10!, in casesC andD the degrees of the dependen
of fidelity F(u,f) on anglesu is maximum at a certain value
of kt. Figure 4~c! shows the differences between the ma
mum and minimum values of the fidelity,g(kt)
[max$F(u,f)%2min$F(u,f)%. It is not clear whyg(kt) has
the maximum atkt'0.98. As depicted in Fig. 5, the averag

FIG. 4. FidelityF(u,f) vs angleu for various values ofkt. ~a!
For caseC, noise is modeled byL1z andL2z and~b! for caseD by
L3z . F(u,f) is independent of anglef because of the cylindrica
symmetry ofLiz with i 51,2,3. Differences between the maximu
and minimum values of the fidelityF(u,f) are plotted as a function
of kt.
6-4
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fidelity falls to the value of 1/2 and is approximately fitted b

Fav~t!5
1

2
1

1

2
e21.25kt. ~16!

One sees that casesA andB entirely differ from casesC and
D. Although an analytic solution for caseC andD cannot be
obtained, it can be understood why the average fidelity
cays to 1/2 despite noise described by the Lindblad oper
acting in one direction. Consider a rotation of a qubit ab
the x axis in the presence of noise modeled byLz . A simple
calculation shows that the Bloch vectorr of a qubit, which is
defined byr5 1

2 (11r•s), falls to zero for any initial state
This means the qubit is depolarized and becomes a to
mixed state. Thus the average fidelity decays to 1/2 whe
gate operation is done in the presence of noise.

It is valuable to discuss our results in connection with
previous studies@3#. In Ref. @3#, Popescu illustrated an ex

FIG. 5. Average fidelityFav as a function ofkt for casesC
~dotted boxes! andD ~filled boxes!.
d

r,

e

A

. A

02231
e-
or
t

lly
a

e

ample of a mixed pair that does not violate any Bell inequ
ity but has an average fidelity 3/4 for arbitrary input stat
given by r5 1

8 I 1 1
2 uC2&^C2u with uC2&5(1/A2)(u01&

2u10&). Our calculation in which the quantum channel
described by this mixed state shows the fidelityF(u,f)
53/4, independent of anglesu andf, and thus gives us an
average fidelityFav53/4. Horodeckiet al. @6# showed that
the optimal fidelity of the standard quantum teleportation
given by f 5(2FAB11)/3, whereFAB is the singlet fraction
of the quantum channel. From Eq.~14!, one can writeFAB
5(11e24kt)/2.

In conclusion, we calculated the fidelity and the avera
fidelity of quantum teleportation subject to various types
noises during different steps of the teleportation. We exa
ined the range of states that can be accurately telepo
Among states to be teleported, the eigenstate of the Lindb
operators is less sensitive to the noise. It was shown that
cannot distinguish whether an unknown state to be te
ported, which is realized by a single particle, is mixed or t
quantum channel is noisy. We found the dependence of
average fidelity on the type of noise affecting the quant
channel. If the quantum channel is subject to isotropic no
the average fidelity may decay to 1/2. On the other hand
the noisy quantum channel is described by a single Lindb
operator, the average fidelity is always greater than the va
of 2/3, the best possible value that can be obtained only
the classical communication.
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