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Fidelity of quantum teleportation through noisy channels
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We investigate quantum teleportation through noisy quantum channels by solving analytically and numeri-
cally a master equation in the Lindblad form. We calculate the fidelity as a function of decoherence rates and
angles of a state to be teleported. It is found that the average fidelity and the range of states to be accurately
teleported depend on types of noises acting on quantum channels. If the quantum channels are subject to
isotropic noise, the average fidelity decays to 1/2, which is smaller than the best possible value of 2/3 obtained
only by the classical communication. On the other hand, if the noisy quantum channel is modeled by a single
Lindblad operator, the average fidelity is always greater than 2/3.
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Quantum teleportation1,2] is a process by which a accurately teleported. We also examine the characteristic de-
sender, called Alice, transmits an unknown quantum state tpendence of the average fidelity on types of noises acting on
a remote recipient, called Bob, via dual classical and quanqubits at each stage of the teleportation.
tum channels. Here a pair of maximally entangled particles, Let us consider quantum teleportation through noisy
forming a quantum channel, should be used for the perfed;hanne|s as illustrated in Fig. 1. The top two qubits are taken
quantum teleportation. However, while being distributed andy Alice and the bottom qubit is kept by Bob. Here, mea-
kept by Alice and Bob, an entangled state may lose its cosurements are performed at the end of the circuit for compu-
herence and become a mixed state due to the interaction witational convenience. Classical conditional operations can be
its environment. replaced with corresponding quantum conditional operations

Bennettet al. [1] noted that the quantum channel that is[9]. Decoherence of an open quantum system is due to the
less entangled reduces the fidelity of teleportation, and/or th#iteraction with its environment. Under the assumption of
range of states that can be accurately teleported. Popgscu Markov and Born approximations and after tracing out the
investigated the relations among teleportation, Bell's in-€nvironmental degrees of freedom, the dynamics of an open
equalities, and nonlocality. It was demonstrated that there arguantum system is described by a master equation for the
mixed states that do not violate any Bell-type inequality, butdensity operator of the quantum system alopf), in the
still can be used for teleportation. Horodeckt al. [4]  Lindblad form[10,11]
showed that any two mixed spin-states that violate the
Bell-CHSH inequality are useful for teleportation. Also dp i s 1o
Horodeckiet al.[6] proved the relation between the optimal 5y =~ g[Hs,P]WL% Liaplio— 5ikiabia P}
fidelity of teleportation and the maximal singlet fraction of ’ 1)
the quantum channel. BanasZéH investigated the fidelity
of quantum teleportation using nonmaximally entangled , (i
statgs. Ishizak@8]pstudied the q%antum channgl subjecgtJ toyvhere t.he Lmdblad- operatdr; = Vi o(1) ‘T&) acts on the
local interaction with two-level environment. Although the |t2)qub|t and descnbe; dgcoherepce. Throughgut Fh's paper,
studies cited above reveal the important relations betweefi« denotes the Pauli spin 'matrilx of thm,qu't W't_h @
the degree of entanglement of the quantum channel ang *'Y:Z- The decoherence time is approximately given by
quantum teleportation, there seem to be little studies on th&/%i..- We could control noise by switching; ,(t) on and
direct connection between the quantum teleportation and dé&ff- We take the Hamiltonian of a qubit system as an ideal
coherence rates. Thus it might be interesting to know howndel of & quantum computer, which is given [42]
the type and strength of noise acting on quantum channels
affect the fidelity of quantum teleportation.

In this paper, we investigate quantum teleportation
through noisy channels by solving analytically and numeri-
cally a master equation in the Lindblad form. We obtain the
fidelity of quantum teleportation as a function of decoher-
ence time and angles of an unknown state to be teleported.
Thus we explicitly demonstrate Bennedt al’'s argument
that noisy quantum channels reduce the range of states to be gig_ 1. A circuit for quantum teleportation through noisy chan-

nels. The two top lines belong to Alice, while the bottom one be-
longs to BobM represents measurement. The dotted béxd; C,

*Electronic address: scoh@mrm.kaist.ac.kr and D denote noisy channels. Time advances from left to right.
"Electronic address: sclee@mail.kaist.ac.kr During the time interval corresponding to the width of the dotted
*Electronic address: hwlee@laputa.kaist.ac.kr box, the Lindblad operator is turned on.
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the overlap between a staté;,) to be teleported and the
=73 2 BO(t 0")—2 JioPa®, (20 density operatop,, for a teleported state,

F(0,%)=YinlPout ¥in)- 6
where V=(o0 o) ,0{)) and o =3(cPxic{). | (0. 8)= (Wl poul i ©

solid-state qubits, varlous types of couplings between qubitHere the fidelityF (6, ¢») depends on an input state as well as

i andj are possible such as théY coupling given above the type of noise acting on qubits. We calculkied, ¢) and

the Heisenberg coupling, and the Ising coupllhgrz 0'2 determine the range of statpg;,) which can be accurately

in nuclear magnetic resonance. The various quantum gates faleported. Since in general a state to be teleported is un-
Fig. 1 could be implemented by a sequence of pulses, i.e., bynown, it is more useful to calculate the average fidelity
turning on and ofB)(t) andJ;;(t). We develop the simu- given by

lation code that solves Eql), the set of differential equa-

tions for the density matriyp,,(t), based on the Runge- _ g 2m .
Kutta method[13]. Equation (1) shows Tp(t)=1 at all Fa 0 do 0 d¢ F(0,¢)sind, @)
times.

An unknown state to be teleported can be written asyhere 4r is the solid angle.
|iny=a|0)+ B|1) with |a|?+|B|>=1. It is convenient to Case A: States to be teleported are mixadce is not
rewrite | ;,) as a Bloch vector on a Bloch sphere, able to know or copy the state to be teleported without dis-

turbing it. So it may be pure or mixed. As Bennettal. [1]
0\ . [0 noted, the linear property of quantum teleportation enables
o\ — _ | al9/2 _ | a—i¢l2 ' .
|in) cos(z)e |0) +sin 2)8 1), 3) one to teleport not only a pure state but also a mixed state.
The quantum operatiorf€ transforms a pure state;,
where 6 and ¢ are the polar and azimuthal angles, respec=|#in){#in| to a mixed statef(p;,). The time evolution of
tively. The maximally entangled state of two sgirparticles ~ pure states to mixed states is described by (Ep(see Ref.

shared and kept by Alice and Bob is given by [9] for the connection between the two approagh&som
Eq. (5), quantum teleportation of mixed states reads

(|oo>+|11>) (4) E(poud =TI AU eI €(pin) @ penU et} ®

|,800> \/—
The decoherence of the state to be telepodég,), is trans-
The input state of the quantum teleportation circuit in Fig. 1ferred to the state teleporteé(p,,). For various types of
is the product state dfyi,) and|Bqy. After the implemen-  noises, we obtain both analytic and numerical solutions of
tation of the quantum circuit of Fig. 1 and the measuremenEg. (1) and calculate the fidelity.

of the top two qubits, Bob gets the teleported statg,). It Suppose a state to be teleported is subject to the noise
is useful to describe the teleportation in terms of densityl_l,z. It is easy to find the analytic solution of E(L) when
operators H(t) =0. We obtain the mixed state to be telepori€gh,),
as p(t)=pR(0), pM(t)=p{(0), and pN(1)
Pou=Tr1. AU e1 pin® penU ot (5  =p®(0)exp(2«t). Then from Eqgs(8) and(6), the fidelity

can be calculated as

where pin=[in){¥inl, pen=|Boo){Bod, and T  is a partial
trace over qubits 1 and 2. The unitary operatigy is imple-
mented by the teleportation circuit as shown in Fig. 1. If the
teleportation is ideal, the density-matrix teleporteg; is
identical top;, up to the normalization factor. If 2k7<1, F(6,¢)=1—k7sirfd. On the other hand, if

As illustrated as dotted boxes in Fig. 1, we consider fouRx7>1, F(6,)=2%(1+cos¥). Figure 2a) is the plot of
different noisy channelsA, B, C, andD. In caseA an un-  Eq. (9) for 2«x7=3.0.
known state|¢;,) loses its coherence and becomes a mixed Let us consider that the staltg;,) is subject to the noise
state before it is teleported. In cagan entangled pair, described bylL,,. After some calculations, we obtain the
forming a quantum channel, becomes noisy while beindidelity
shared and kept by Alice and Bob. In caggandD, while
Alice and Bob perform the Bell measurement and the unitary 1 i s i i
operation, respectively, noise may set in. For casesdB ¢)= 5[1+sm200052¢>+e (coS 0 +sirP o sirt¢)].
we obtain both analytic and numerical solutions of EL, (10)
while in casesC andD the numerical solutions of Eql) are
obtained. For our numerical calculatior, ,(t) is turned on  If 2k7<1, F(8,¢$)=1— k7(co+sirdsin’g). In the limit
for the time intervalr corresponding to the width of each of 2x7>1, we haveF(6,$)=31(1+sirfdcos¢). The plot
dotted box in Fig. 1. of Eq. (10) at 2«7=3.0 is shown in Fig. ).

The properties of quantum teleportation through noisy Substituting Eq(10) or (9) into Eq.(7), we get the aver-
guantum channels are quantified by the fidelity that measuresge fidelity

F(e,¢):1—%(1—e*2“)sirﬁa. 9
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FIG. 2. FidelityF (8, ¢) as a function of angleg and ¢ of the
state to be teleported for cageat 2«7=3.0 and for caseéB at
4x7=3.0. For casé in (a), the Lindblad operatork,, andL;,,
and in(b), L, andL; are turned on. The maximum value of the
fidelity of (a) and(b) is 1 and the minimum is 1/2. The contours on
the #— ¢ planes in(a) and (b) join the points with the fidelities
F(0,$)=3/4 and 2/3, respectively. Ifc), the isotropic noise is
applied.

2 1 —2kT

Fa\,(r)=§+§e . (11)
In Fig. 3, the solid lingdenoted by casé-1) shows the plot
of Eq. (11), the average fidelity as a function &fr for the
noise modeled by, orL,,.

Now suppose the isotropic noisé Ly, andL,,) is
applied to the statéy;,). The analytic solution of Eq(l)
gives us the fidelity written by

1 1 —4kT
FaV=F(6,¢)=5+ 5€ . (12
If 4x7<1, F(0,p)=1—2k7. For 4x7>1, we have
F(6,¢4)=3%, as shown in Fig. @). In Fig. 3, the dotted line
(denoted by casé-2) is the plot of Eq.(12).

Case B: Quantum channels are nais¥hile being dis-
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FIG. 3. Average fidelityF,, as a function ofc7 for casesA and
B. The solid line(caseA-1) is the plot of Eq.(11) for the noise
described by, (or byL;,). The dotted lindcaseA-2) is based on
Eq. (12) corresponding to the isotropic noise. The dashed (ase
B-1) is for Eq.(14), the noise modeled bly,, andL; (or by L,,
andL ,). The dash-dotted linecaseB-2) is the plot of Eq.(15) for
the isotropic noise. The horizontal dotted line with 2/3 shows the
maximum fidelity obtained only by the classical communication.

peri—E(pen), OF by Eq.(1). From Eq.(5), the quantum tele-
portation with noisy quantum channels can be written as

E(pow) :Trl,z{utelpin® g(Pen)U?el}' 13

We find that the quantum teleportation process transfers the
decoherence of the entangled p&ip.,) to that of the output
state&(pou) - It should be noted that the quantum operation
acting on the entangled pdi(p.,) is not only a 4< 4 matrix,

but effectively a 2<2 matrix. Thus overall features of caBe

are similar to casé\ except the decoherence rates.

Consider the quantum channel subject to the noise acting
in one direction, for example, the direction. This type of
noise is modeled by Lindblad operatdrs,= \x,, o) and
Ls,= k3,0 acting on an entangled pair, qubits 2 and 3,
respectively. Here we assume the same strength of decoher-
ence ratesk=«,,=k3,. We obtain the fidelityF(6,¢)
with the same form of Eq9) except the replacement okz
with 4« 7. That is,F (6, ¢)=1—3[ 1—exp(—4«7)]sirf6. For
the noise described bly,, andLs,, the fidelity F(6,¢) is
identical to the form of Eq(10) with exponent 4.

Let us discuss Bennett al's argument: the imperfect
quantum channel reduces the range of stefg that is ac-
curately teleported1]. Figure 2 shows the fidelitf (0, ¢)
for various types of noises at4=3.0. For the noisy chan-
nel defined bylL,, andL;,, the fidelity F(6,¢) is always
the maximum value of 1 a#=0,m, irrespective ofxr as
depicted in Fig. 2a). These angles indicate statf and
|1), which are eigenstates ofr,. From F(6,¢)=3(1
+cog6) in the limit of 4x7>1, the range of states to be
teleported with fidelityF =3/4 is determined by € < m/4
and 3m/4=< <. The teleported states with fidelity 2/3 are
in the region determined by ces=1/\/3 or cosf<—1/\3.

tributed and stored by Alice and Bob, an entangled state o#VhenL,, and Lz, are applied to qubits 2 and 3, we get
two spins particles may be subject to noise. The dynamicsF(6,¢)=1 at §=n/2 and ¢=0,7 for 4x7>1, which
of an entangled pair subject to quantum noise is described bshown in Fig. 2b). These angles represent states)
the quantum operatiofi acting on the pure entangled state, =(1/y2)(|0)+|1)) and|#)=(1/y2)(|0)—|1)), i.e., eigen-
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states ofco,. The range of states accurately teleported is (a) Case C
depicted by contours in Figs(& and 2b). T — T T
When the quantum channel is subject to noise in one di- wT f8'$§ e
rection, we obtain the average fidelity as depicted in Fig. 3 1.0 o7 — 319 —— -]
(denoted by casB-1) 09
< 08 o e e
Fal7)= §+ %e“‘”. (14) = o7 \\ -
0.6 TememeeT o
The average fidelity decays exponentially to the limiting 05 F T
value of 2/3. This is the best possible score when Alice and 0 ' W;Q -
Bob communicate with each other only through the classical
channel3,5]. 4
Consider the case where the quantum channel is affected (b) Case D
by isotropic noise, which is described by six Lindblad opera-
tors,L,, andL3, with a=x,y,z. Then the analytic calcula- er = 0.19
tion of the fidelity can be written by 10 AT = g:?i pag
11 z 09 ., —
FamF(0,)=5+5e %", (15 s oshk B
S0 ey
As depicted in Fig. &), the fidelity F (6, ¢) is independent 06 [ e o
of angles of input state®) and ¢, for any value ofxr. For 05 FE -— ettt
the quantum channel subject to isotropic noise, one could not
find the range of states that is accurately teleported. As 0 /2 g
shown in Fig. 3(caseB-2), the average fidelity decays to the o
value of 1/2. The number 1/2 can be obtained when Alice ) ‘
and Bob cannot communicate at all and Bob merely selects a (c) g(k7) = max{F(6,¢)} — min{F(8,9)}
state at random. 02 T T T T T 1
It should be noted that except decoherence ratesthe ool
overall features of cases andB are identical. This implies 0.15
that if a state to be teleported is realized by a single particle =
and not by an ensemble, one may not be able to identify < 0.1
whether the state to be teleported is mixed or the quantum
channel is noisy. 0.05
Cases C and D: Noise during Bell's measurement or the 0

unitary operation When Alice performs the Bell's measure-
ment or Bob does the unitary operation on his particle of an
entangled pair, noise may take place as depicted by the boxes
Cor D in Fig. 1. In contrast to casesandB, it seems to be FIG. 4. FidelityF(6,¢) vs angled for various values ok . (&)
difficult to find analytic solutions of Eq(1) for casesC and ~ For caseC, noise is modeled by, andL,, and(b) for caseD by

D because of the time dependence of the qubit Hamiltoniaksz- F(6.¢) is independent of angle because of the cylindrical
Hg(t). Alice’s Bell measurement on qubits 1 and 2 could beSYMMetry ofl;; with i=1,2,3. Differences between the maximum
done by a controlledtoT gate(cNoT) on qubits 1 and 2, and and minimum values of the fidelity (9, ¢) are plotted as a function
a Hadamard gatel, on qubit 1 as shown in Fig. 1. With a of rr.

qubit system modeled by Hamiltonian, Ed2), the
CNOT gate acting on qubits 1 and 2 could be implemente
by the pulse sequencd12,13 e '™*H;R,(m/2)R;y
(— 72)US(mIHR () Uss(m/4)H,.  Here  Ry(6)
icdor2

KT

witched on during the time interval corresponding to the
otal operation time that it takes to implement Bell's mea-
surement or controlle andZ operations. The time interval
7 depends on the operation times of a single gate or a two-
=e is a rotation of qubif by angle¢ about thex axis.  qubit gate, proportional tt/|B"| andh/J;;, respectively.
A two-qubit operationU33(#) on qubits 1 and 2 is imple- Figure 4 shows the fidelitf (6, ¢) as a function of angl®
mented by turning on the couplingy, for a timet corre-  for various values ofk7. In contrast to the previous cases
sponding to #=J,5t/A. During each qubit operation, the (casesA-1, A-2, B-1, andB-2) whose fidelity is given by Eq.
noise modeled by Lindblad operators is also switched on(9) or (10), in case<C andD the degrees of the dependence
Thus, it does not seem to be simple to obtain an analytiof fidelity F(6, ) on anglesd is maximum at a certain value
solution and we take a numerical method to solve the probef «r. Figure 4c) shows the differences between the maxi-
lem. mum and minimum values of the fidelityg(x7)
Consider the noise modeled by the Lindblad operatqrs  =maxXF(6,¢)}—min{F(6,4)}. It is not clear whyg(x7) has
andL,, for caseC and L3, for caseD. Here the noise is the maximum ak7~0.98. As depicted in Fig. 5, the average
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FIG. 5. Average fidelityF,, as a function ofxr for casesC
(dotted boxesandD (filled boxes.

fidelity falls to the value of 1/2 and is approximately fitted by
11

T T al2%r

Fa(7) 2+ 5 € . (16)

One sees that cas@sandB entirely differ from case€ and
D. Although an analytic solution for caggandD cannot be

PHYSICAL REVIEW A66, 022316 (2002

ample of a mixed pair that does not violate any Bell inequal-
ity but has an average fidelity 3/4 for arbitrary input states,
given by p=31+3|¥ " W¥~| with |¥)=(1/y2)(/0)
—]10)). Our calculation in which the quantum channel is
described by this mixed state shows the fidel&{6, ¢)
=3/4, independent of anglesand ¢, and thus gives us an
average fidelityF,,= 3/4. Horodeckiet al. [6] showed that
the optimal fidelity of the standard quantum teleportation is
given by f=(2F 5g+1)/3, whereF , is the singlet fraction

of the quantum channel. From E(.4), one can writeF 5
=(1+e *7)/2.

In conclusion, we calculated the fidelity and the average
fidelity of quantum teleportation subject to various types of
noises during different steps of the teleportation. We exam-
ined the range of states that can be accurately teleported.
Among states to be teleported, the eigenstate of the Lindblad
operators is less sensitive to the noise. It was shown that one
cannot distinguish whether an unknown state to be tele-
ported, which is realized by a single particle, is mixed or the
quantum channel is noisy. We found the dependence of the
average fidelity on the type of noise affecting the quantum
channel. If the quantum channel is subject to isotropic noise,

obtained, it can be understood why the average fidelity deg,e ayerage fidelity may decay to 1/2. On the other hand, if
cays to 1/2 despite noise described by the Lindblad operatqhe ngisy quantum channel is described by a single Lindblad

acting in one direction. Consider a rotation of a qubit aboulynerator, the average fidelity is always greater than the value

the x axis in the presence of noise modeledlhy A simple
calculation shows that the Bloch vectoof a qubit, which is
defined byp=3(1+r- o), falls to zero for any initial state.

of 2/3, the best possible value that can be obtained only by

the classical communication.

This means the qubit is depolarized and becomes a totally We thank Dr. Jaewan Kim for helpful discussions. This
mixed state. Thus the average fidelity decays to 1/2 when work was supported by the Brain Korea 21 Project of the

gate operation is done in the presence of noise.
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It is valuable to discuss our results in connection with therean Ministry of Science and Technology, and KOSEF via
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