

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2012 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 618–646

LOWER BOUNDS FOR LOCAL MONOTONICITY
RECONSTRUCTION FROM TRANSITIVE-CLOSURE SPANNERS∗

ARNAB BHATTACHARYYA†, ELENA GRIGORESCU‡ , MADHAV JHA§ , KYOMIN JUNG¶,
SOFYA RASKHODNIKOVA§ , AND DAVID P. WOODRUFF‖

Abstract. Given a directed graph G = (V,E) and an integer k ≥ 1, a k-transitive-closure-
spanner (k-TC-spanner) ofG is a directed graph H = (V, EH) that has (1) the same transitive-closure
as G and (2) diameter at most k. Transitive-closure spanners are used in access control, property
testing and data structures. We show a connection between 2-TC-spanners and local monotonicity
filters. A local monotonicity filter, introduced by Saks and Seshadhri [SIAM J. Comput., pp. 2897–
2926], is a randomized algorithm that, given access to an oracle for an almost monotone function
f : {1, 2, . . . , m}d → R, can quickly evaluate a related function g : {1, 2, . . . , m}d → R which is
guaranteed to be monotone. Furthermore, the filter can be implemented in a distributed manner.
We show that an efficient local monotonicity filter implies a sparse 2-TC-spanner of the directed
hypergrid, providing a new technique for proving lower bounds for local monotonicity filters. Our
connection is, in fact, more general: an efficient local monotonicity filter for functions on any partially
ordered set (poset) implies a sparse 2-TC-spanner of the directed acyclic graph corresponding to the
poset. We present nearly tight upper and lower bounds on the size of the sparsest 2-TC-spanners
of the directed hypercube and hypergrid. These bounds imply stronger lower bounds for local
monotonicity filters that nearly match the upper bounds of Saks and Seshadhri.

Key words. property testing, property reconstruction, monotone functions, spanners, hyper-
cube, hypergrid

AMS subject classifications. 05C20, 68Q17

DOI. 10.1137/100808186

1. Introduction. We show a connection between transitive-closure spanners
and local filters. Let us start by defining these objects and explaining the context in
which they originally arose.

1.1. Transitive-closure spanners. Graph spanners were introduced by Awer-
buch [4] and Peleg and Schäffer [21] in the context of distributed computing, and since
then have found numerous applications, such as efficient routing [14, 15, 23, 25, 32],
simulating synchronized protocols in unsynchronized networks [22], parallel and dis-
tributed algorithms for approximating shortest paths [12, 13, 17], and algorithms for

∗Received by the editors September 10, 2010; accepted for publication (in revised form) February
6, 2012; published electronically May 15, 2012. The preliminary version of the paper appeared in
RANDOM 2010 [6].

http://www.siam.org/journals/sidma/26-2/80818.html
†Center for Computational Intractability, Princeton University, 35 Olden St., Princeton, NJ 08540

(arnabb@princeton.edu). This author was supported by NSF grants CCF-0832797, 0830673, and
0528414.

‡College of Computing, Georgia Institute of Technology, 266 Ferst Drive, Atlanta, GA 30332
(elena g@csail.mit.edu). This author’s research was conducted when the author was at MIT CSAIL.
Research supported in part by NSF grant CCR-0829672 and NSF award 1019343 to the Computing
Research Association for the CI Fellows Project.

§Department of Computer Science and Engineering, Pennsylvania State University, University
Park, State College, PA 16803 (mxj201@cse.psu.edu, sofya@cse.psu.edu). These authors were sup-
ported by NSF CAREER award CCF-0845701.

¶Computer Science, KAIST, Daejeou 305701, South Korea (kyomin@kaist.edu). This author
was supported by the Engineering Research Center of Excellence Program of Korea Ministry of
Education, Science and Technology (MEST)/National Research Foundation of Korea (NRF) (grant
2010-0001713).

‖IBM Almaden Research Center, Mountain View, CA 94040 (dpwoodru@us.ibm.com).

618

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 619

Fig. 1.1. A property-preserving filter. Given a query x, the filter looks up a few values of the
data function f and outputs g(x), where the reconstructed function g satisfies a desired property.

distance oracles [5, 33]. Several variants of graph spanners have been defined. In
this work, we focus on transitive-closure spanners, which were formally introduced by
Bhattacharyya et al. [7] as a common abstraction for applications in access control,
property testing, and data structures.

For a directed graph G = (V,E) and two vertices u, v ∈ V , let dG(u, v) denote
the smallest number of edges on a path in G from u to v.

Definition 1.1 (TC-spanner). Given a directed graph G = (V,E) and an integer
k ≥ 1, a k-transitive-closure-spanner (k-TC-spanner) of G is a directed graph H =
(V,EH) with the following properties:

1. EH is a subset of the edges in the transitive closure of G.
2. For all vertices u, v ∈ V , if dG(u, v) < ∞, then dH(u, v) ≤ k.

Thus, a k-TC-spanner is a graph with small diameter1 that preserves the connec-
tivity of the original graph. In the applications above, the goal is to find the sparsest
k-TC-spanner for a given k and G. The number of edges in the sparsest k-TC-spanner
of G is denoted by Sk(G). We review previous work on bounding Sk(G) for differ-
ent families of graphs in section 1.4. For a detailed description of recent results on
TC-spanners, we refer the reader to the survey by Raskhodnikova [24].

1.2. Local property reconstruction. Property-preserving data reconstruc-
tion was introduced by Ailon et al. [1]. In this model, a reconstruction algorithm,
called a filter, sits between a client and a dataset. A dataset is viewed as a function
f : D → R. The client accesses the dataset using queries of the form x ∈ D to the
filter. Given a query x, the filter generates a small number of lookups a ∈ D to the
dataset, from which it receives the values f(a) and then computes a value g(x), where
g must satisfy some fixed structural property P , such as being a monotone function.
(See Figure 1.1 for an illustration.) Extending this notion, Saks and Seshadhri [26]
defined local reconstruction. A filter is local if it allows for a local (or distributed)
implementation: namely, if the output function g does not depend on the order of the
queries.

Definition 1.2 (local filter). A local filter for reconstructing property P is a
randomized algorithm A that has oracle access to a function f : D → R and to an

1In this work and other papers on transitive-closure spanners, the diameter of a graph is defined
to be the maximum distance from u to v over all nodes u and v such that there is a path from u to
v in the graph.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

620 BHATTACHARYYA ET AL.

Fig. 1.2. Examples of hypergrids: H2
4 (left) and H3 (right). All edges are directed toward

vertices with larger coordinates.

auxiliary random string ρ (the “random seed”), and takes as input a query x ∈ D. For
fixed f and ρ, algorithm A runs deterministically on input x and produces an output
Af,ρ(x) ∈ R. (Note that a local filter has no internal state for storing previously made
queries.) The function g(x) = Af,ρ(x) output by the filter must obey the following
conditions:

• For each f and ρ, the function g must satisfy P.
• If f satisfies P, then g must be identical to f with probability at least 1 − δ,
for some error probability δ ≤ 1/3. The probability is taken over ρ.

When answering a query x ∈ D, a filter may look up values of f at domain points
of its choice using its oracle. The lookup complexity of a local filter A is the maximum
number of lookups performed by A for any f and ρ and for any input query x. A
local filter is nonadaptive if its lookups on input query x do not depend on answers
given by the oracle.

Saks and Seshadhri actually considered more restrictive filters which required that
g be sufficiently close to f .

Definition 1.3 (distance-respecting local filter). For a function B : Z+ → Z
+,

a distance-respecting local filter with error blowup B(n) is a local filter in the sense
of Definition 1.2 for which the following holds. With high probability (over the choice
of ρ), Dist(g, f) ≤ B(n) ·Dist(f,P), where Dist(g, f) is the number of points in the
domain on which f and g differ and Dist(f,P) is ming∈P Dist(g, f).

Local monotonicity filters. The most studied property in the local reconstruc-
tion model is monotonicity of functions [26, 1]. To define it, consider an n-element
poset Vn, and let Gn = (Vn, E) be the relation graph, i.e., the Hasse diagram, for
Vn. A function f : Vn → R is called monotone if f(x) ≤ f(y) for all (x, y) ∈ E.
We focus on posets whose relation graph is a directed hypergrid. The directed hy-
pergrid, denoted Hd

m and illustrated in Figure 1.2, has vertex set2 [m]d and edge
set {(x, y) : ∃ unique i ∈ [d] such that yi − xi = 1 and for j �= i, yj = xj}. For the
special case m = 2, the hypergrid Hd

2 is called the hypercube and is also denoted by
Hd. A monotonicity filter needs to ensure that the output function g is monotone.
For instance, if Gn is a directed line, H1

n, the filter needs to ensure that the output
sequence specified by g is sorted.

To motivate monotonicity filters for hypergrids, consider the following scenario
of rolling admissions. An admissions office assigns d scores to each application, such
as the applicant’s GPA, SAT results, essay quality, etc. Based on these scores, some
complicated (third-party) algorithm outputs the probability that a given applicant

2For a positive integer m, we denote {1, 2, . . . , m} by [m].

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 621

should be accepted. The admissions office wants to make sure “on the fly” that strictly
better applicants are given higher probability that is, probabilities are monotone in
scores. A hypergrid monotonicity filter may be used here. If it is local, it can be
implemented in a distributed manner with an additional guarantee that every copy of
the filter will correct to the same monotone function of the scores. This can be done
by supplying the same random seed to each copy of the filter.

Saks and Seshadhri [26] give a distance-respecting local monotonicity filter for the
directed hypergrid Hd

m that makes (logm)O(d) lookups per query for m ≥ 3 (where,
as always in this article, the logarithm has base 2). No nontrivial monotonicity filter
for the hypercube Hd, meaning a filter performing o(2d) lookups per query, is known.
One of the monotonicity filters of Ailon et al. [1] is a local filter for the directed
line H1

m with O(logm) lookups per query (but a worse error blowup than in [26]).
As observed in [26], this upper bound is tight. Saks and Seshadhri [26] also present
a lower bound of 2βd on the number of lookups per query for a distance-respecting
local monotonicity filter on Hd with error blowup 2βd, where β is a sufficiently small
constant. Notably, all known local monotonicity filters are nonadaptive.

1.3. Our contributions. The contributions of this work fall into two cate-
gories:

1. We show that an efficient local monotonicity filter implies a sparse 2-TC-
spanner of the directed hypergrid, providing a new technique for proving lower bounds
for local monotonicity filters.

2. We present nearly tight upper and lower bounds on the size of the sparsest 2-
TC-spanners of the directed hypercube and hypergrid. These bounds imply stronger
lower bounds for local monotonicity filters for these graphs that, for nonadaptive
filters and for filters that look up function values only on points comparable to x on
every query x, nearly match the upper bounds by Saks and Seshadhri [26]. (Two
nodes x, y are called comparable if x is reachable from y or if y is reachable from x;
otherwise, they are incomparable.)

1.3.1. Our lower bounds for local monotonicity reconstruction. We show
how to construct sparse 2-TC-spanners from local monotonicity filters with low lookup
complexity. These constructions, together with our lower bounds on the size of 2-
TC-spanners of the hypergrid and the hypercube (stated in section 1.3.2), imply
lower bounds on lookup complexity of local monotonicity filters for these graphs with
arbitrary error blowup. Table 1.1 summarizes our results from this section.

We state the properties of our transformations from nonadaptive and adaptive
filters separately.

Theorem 1.4 (from nonadaptive filters to 2-TC-spanners). Let Gn = (Vn, En)
be a poset on n nodes. Suppose there is a nonadaptive local monotonicity filter A for
Gn that looks up at most �(n) values on any query and has error probability at most
δ. Then there is a 2-TC-spanner of Gn with O(n�(n) · 	 logn

log(1/δ)
) edges.
The next theorem applies even to adaptive local monotonicity filters. It takes into

account how many lookups on query x are to nodes that are incomparable to x. In
particular, if there are no such lookups, then the constructed 2-TC-spanner is of the
same size as in Theorem 1.4.

Theorem 1.5 (from adaptive filters to 2-TC-spanners). Let Gn = (Vn, En) be
a poset on n nodes. Suppose there is an (adaptive) local monotonicity filter A for
Gn that, for every query x ∈ Vn, looks up at most �1(n) vertices comparable to x and
at most �2(n) vertices incomparable to x, and has error probability at most δ. Then
there is a 2-TC-spanner of Gn with O(n�1(n) · 2�2(n)	 logn

log(1/δ)
) edges.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

622 BHATTACHARYYA ET AL.

Table 1.1

Summary of our lower bounds for lookup complexity of local monotonicity filters. The parameter
α ≈ 0.1620, and the parameter β is a sufficiently small constant (see [26]). The only known local
filter for monotonicity on hypergrids (from [26]) is nonadaptive and makes (logm)O(d) lookups for
m ≥ 3. In adaptive lower bounds, �2 denotes the maximum number of incomparable elements looked
up on a single query (see Theorem 1.5).

Type Lower bound Blowup B(m, d) Reference

Low-dimensional

hypergrid Hd
m(

1 < d < 2 logm
log logm

)
Nonadaptive Ω

(
logd−1 m

dd(2 log logm)d−1

)
Arbitrary

Corollary 1.6

Adaptive Ω

(
logd−1 m

2�2dd(2 log logm)d−1

)
Corollary 1.7

Hypercube Hd

Nonadaptive Ω
(
2αd

d

)
Arbitrary

Corollary 1.6

Adaptive Ω
(
2αd−�2

d

)
Corollary 1.7

Adaptive Ω(2βd) < 2βd [26]

In Theorems 1.4 and 1.5, when δ is sufficiently small, the bounds on the 2-TC-
spanner size become O(n�(n)) and O(n�1(n) · 2�2(n)), respectively. As mentioned
earlier, all known monotonicity filters are nonadaptive. It is an open question whether
it is possible to give a transformation from adaptive local monotonicity filters to 2-
TC-spanners without incurring an exponential dependence on the number of lookups
made to points incomparable to the query point. We do not know whether this
dependence is an artifact of the proof or an indication that lookups to incomparable
points might be helpful for adaptive local monotonicity filters.

In Theorems 1.8 and 1.9, stated in section 1.3.2, we present nearly tight bounds
on the size of the sparsest 2-TC-spanners of the hypercube and the hypergrid. The-
orems 1.4 and 1.5, together with the lower bounds in Theorems 1.8 and 1.9, imply
the following lower bounds on the lookup complexity of local monotonicity filters for
these graphs, with arbitrary error blowup.

Corollary 1.6. Consider a nonadaptive local monotonicity filter with constant
error probability δ. If the filter is for functions f : Hd

m → R (where 1 < d < 2 logm
log logm),

it must perform

Ω

(
logd−1m

dd(2 log logm)d−1

)

lookups per query. If the filter is for functions f : Hd → R, it must perform Ω(2
αd

d)
lookups per query, where α ≥ 0.1620.

Corollary 1.7. Consider an (adaptive) local monotonicity filter with constant
error probability δ that, for every query x ∈ Vn, looks up at most �2 vertices incompa-
rable to x. If the filter is for functions f : Hd

m → R (where 1 < d < 2 logm
log logm), it must

perform

Ω

(
logd−1m

2�2dd(2 log logm)d−1

)

lookups to vertices comparable to x per query x. If the filter is for functions f : Hd →
R, it must perform Ω(2

αd−�2

d) comparable lookups, where α ≥ 0.1620.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 623

Table 1.2

Comparison of our results on the size of 2-TC-spanners of the hypergrid and the hypercube
with naive bounds. Constant c ≈ 1.1620, while cm depends on m. No nontrivial bounds were known
prior to this work.

This work Naive bounds
Lower bound Upper bound Lower bound Upper bound

Hypergrid Hd
m

Ω
(

md logd m
(2d log logm)d−1

)

if d < logm
2 log logm

md logd m dmd−1(m − 1)
(

m2+m
2

)d −md

Ω(2cmd) O(d2m2cmd)

Hypercube Hd Ω(2cd) O(d32cd) 2d−1d 3d − 2d

Prior to this work, no lower bounds for monotonicity filters on Hd
m with depen-

dence on both m and d were known. Unlike the bound of Saks and Seshadhri [26],
our lower bounds hold for any error blowup and for filters which are not necessarily
distance-respecting. Our bounds are tight for nonadaptive filters. Specifically, for
the hypergrid Hd

m of constant dimension d and m ≥ 3, the number of lookups is
(logm)Θ(d), and for the hypercube Hd, it is 2Θ(d) for any error blowup.

Testers versus filters. Bhattacharyya et al. [7] obtained monotonicity testers
from 2-TC-spanners. Unlike in the application to monotonicity testing, here we use
lower bounds on the size of 2-TC-spanners to prove lower bounds on complexity of
local monotonicity filters. Lower bounds on the size of 2-TC-spanners do not imply
corresponding lower bounds on monotonicity testers; e.g., the best monotonicity tester
onHd runs in O(d2) time [18, 16], while, as shown in Theorem 1.9, every 2-TC-spanner
of Hd must have size exponential in d.

1.3.2. Our bounds on the size of 2-TC-spanners of the hypercube and
the hypergrid. Table 1.2 summarizes our results from this section. Our main the-
orem, proved in section 4, gives a set of explicit bounds on S2(Hd

m).
Theorem 1.8 (hypergrid). Let S2(Hd

m) denote the number of edges in the spars-
est 2-TC-spanner of Hd

m. Then

Ω

(
md logdm

(2d log logm)d−1

)
= S2(Hd

m) ≤ md logd2 m.

The upper bound holds for all m ≥ 3, while the lower bound is interesting (better than
naive bounds; see Table 1.2) for d < 2 logm

log logm .
The upper bound in Theorem 1.8 follows from a general construction of k-TC-

spanners of graph products for arbitrary k ≥ 2, presented in section 4.1. The lower
bound is the most technically difficult part of our work. It is proved by a reduction of
the 2-TC-spanner construction for [m]d to that for the 2× [m]d−1 grid and then direct
analysis of the number of edges required for a 2-TC-spanner of 2× [m]d−1. We show a
trade-off between the number of edges in the 2-TC-spanner of the 2× [m]d−1 grid that
stay within the hyperplanes {1}× [m]d−1 and {2}× [m]d−1 versus the number of edges
that cross from one hyperplane to the other. The proof proceeds in multiple stages.
Assuming an upper bound on the number of edges staying within the hyperplanes,
each stage is shown to contribute a substantial number of new edges crossing between
the hyperplanes. The proof of this trade-off lemma is already nontrivial for d = 2 and
is presented first in section 4.2.1. The proof for d > 2 is presented in section 4.2.2.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

624 BHATTACHARYYA ET AL.

While Theorem 1.8 is most useful when m is large and d is small, in section 6
we present bounds on S2(Hd

m) which are optimal up to a factor of d2m and thus su-
persede the bounds from Theorem 1.8 when m is small. These bounds are stated in
Theorem 6.2. In particular, for constant m, our upper and lower bounds differ by
only a factor polynomial in the dimension d. The general form of these bounds is a
somewhat complicated combinatorial expression, but they can be estimated numer-
ically. Specifically, S2(Hd

m) = 2cmd poly(d), where c2 ≈ 1.1620 and c3 ≈ 1.85, both
significantly smaller than the exponents corresponding to the transitive closure sizes
for appropriate m.

First, we consider the special case of m = 2 (i.e., the hypercube) in section 5, and
then generalize the arguments to larger m in section 6. Specifically, we obtain the
following theorem for the hypercube.

Theorem 1.9 (hypercube). Let S2(Hd) be the number of edges in the sparsest
2-TC-spanner of Hd. Then Ω(2cd) = S2(Hd) = O(d32cd), where c ≈ 1.1620.

We prove the theorem by giving nearly matching upper and lower bounds on
S2(Hd) in terms of an expression with binomial coefficients, and later numerically
estimating the value of the expression. We prove the upper bound in Theorem 1.9 by
presenting a randomized construction of a 2-TC-spanner of the directed hypercube.
Curiously, even though the upper and lower bounds above differ by a factor of O(d3),
we can show that our construction yields a 2-TC-spanner of Hd of size within O(d2)
of the optimal.

As a comparison point for our bounds, note that the obvious bounds on S2(Hd)
are the number of edges in the d-dimensional hypercube, 2d−1d, and the number of
edges in the transitive closure ofHd, which is 3d−2d. (An edge in the transitive closure
of Hd has three possibilities for each coordinate: both endpoints are 0, both endpoints
are 1, or the first endpoint is 0 and the second is 1. This includes self-loops, so we
subtract the number of vertices in Hd to get the desired quantity.) Thus, 2d−1d ≤
S2(Hd) ≤ 3d − 2d. Similarly, the straightforward bounds on the number of edges in a
2-TC-spanner of Hd

m in terms of the number of edges in the directed hypergrid and

in its transitive closure are dmd−1(m− 1) and
(
m2+m

2

)d −md, respectively.

1.4. Previous work on bounding Sk for other families of graphs. Thorup
[29] considered a special case of TC-spanners of graphs G that have at most twice as
many edges as G, and conjectured that for all directed graphs G on n nodes there are
such k-TC-spanners with k polylogarithmic in n. He proved this for planar graphs
[30], but later Hesse [19] gave a counterexample to Thorup’s conjecture for general
graphs. For all small ε > 0 he constructed a family of graphs with n1+ε edges for
which all nε-TC-spanners require Ω(n2−ε) edges.

TC-spanners were also studied, implicitly in [34, 10, 9, 2, 11, 16, 3, 20, 28] and
explicitly in [8, 31], for simple families of graphs, such as directed trees. For the
directed line, Chandra, Fortune, and Lipton [10, 9] implicitly (in the context of work
on circuit complexity) expressed Sk(H1

n) in terms of the inverse Ackermann function.
(See section 2.1 for a definition.) The construction of TC-spanners of the directed
line in [10, 9] is implicit; it appears explicitly, for example, in the survey on TC-
spanners by Raskhodnikova [24]. Narasimhan and Smid [20] and Solomon [28] consider
a graph object, related to TC-spanners, called T -monotone 1-spanners, where T is an
undirected tree. When T is an undirected path (that is,H1

n without edge orientations),
a T -monotone 1-spanner of diameter k directly corresponds to a k-TC-spanner of the
directed line H1

n.
Lemma 1.10 (see [10, 9, 2, 20, 24, 28]). Let Sk(H1

n) be the number of edges in the

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 625

sparsest k-TC-spanner of the directed line H1
n. Then S2(H1

n) = Θ(n logn), S3(H1
n) =

Θ(n log logn), S4(H1
n) = Θ(n log∗ n), and, more generally, Sk(H1

n) = Θ(nλk(n)) for
all k ≥ 2, where λk(n) is the inverse Ackermann function.

The same bound holds for directed trees [2, 11, 31, 28]. An O(n logn · λk(n))
bound on Sk for H-minor-free graph families (e.g., bounded genus and bounded tree-
width graphs) was given in [7].

2. Preliminaries. For x ∈ {0, 1}d, we use |x| to denote the weight of x, that is,
the number of nonzero coordinates in x. A level i in a hypercube contains all vertices
of weight i. The partial order � on the hypergrid Hd

m is defined as follows: x � y
for two vertices x, y ∈ [m]d iff xi ≤ yi for all i ∈ [d]. Similarly, x ≺ y if x and y are
distinct vertices in [m]d satisfying x � y. More generally, we identify each poset with
its relation graph and denote its partial order on the vertices by ≺. Vertices x and y
are comparable if either y is above x (that is, x � y) or y is below x (that is, y � x).
We denote a path from v1 to v�, consisting of edges (v1, v2), (v2, v3), . . . , (v�−1, v�), by
(v1, . . . , v�).

2.1. The inverse Ackermann hierarchy. Our definition of inverse Ackermann
functions is derived from the discussion in [27]. For a given function f : R≥0 → R

≥0,
such that f(x) < x for all x > 2, define the function f∗(x) : R≥0 → R

≥0 to be the
following:

f∗(x) = min{k ∈ Z
≥0 : f (k)(x) ≤ 2},

where f (k) denotes f composed with itself k times.

We note that the solution to the recursion

T (n) ≤
{
0 if n ≤ 2,

a · n+ n
f(n) · T (f(n)) if n > 2

is T (n) = a ·n ·f∗(n). This follows from the fact that f∗(f(n)) = f∗(n)− 1 for n > 2.
We define the inverse Ackermann hierarchy to be a sequence of functions λk(·)

for k ≥ 0. As the base cases, we have λ0(n) = n/2 and λ1(n) =
√
n. For j ≥ 2,

we define λj(n) = λ∗
j−2(n). Thus, λ2(n) = Θ(logn), λ3(n) = Θ(log logn), and

λ4(n) = Θ(log∗ n). Note that the λk(·) functions defined here coincide (up to constant
additive differences) with the λ(k, ·) functions in [2], although they were formulated
a bit differently there.

Finally, we define the inverse Ackermann function α(·) to be α(n) = min{k ∈
Z
≥0 : λ2k(n) ≤ 3}.

3. From local monotonicity filters to 2-TC-spanners. In this section, we
prove Theorems 1.4 and 1.5 that summarize the properties of our transformations from
local monotonicity filters to 2-TC-spanners. The main idea in both transformations
is to construct a graph H in which each vertex v is incident to every vertex looked up
by the filter on query x and random string ρ for a small subset of random strings. To
prove that H is a 2-TC-spanner, we show that for every pair of comparable vertices
x ≺ y the associated sets of lookup vertices must have a nonempty intersection. If
this does not hold, we can find a random string ρ and construct a function h such that
the output function g of the filter on input h and random seed ρ is not monotone:
namely, g(x) = 0 and g(y) = 1.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

626 BHATTACHARYYA ET AL.

ݔ

ݕ
0

݂ሺ௫,௬ሻ݂ሺ௫,௬ሻ

ݔ

ݕ
01 1 0

ݔ

ݕ
0

݄
1 001

Fig. 3.1. Functions defined in the proof of Theorem 1.4: f(x,y), f(x,y), and h. Observe that
f(x,y)(x) = f(x,y)(y) = 1, f(x,y)(x) = f(x,y)(y) = 0, h(x) = 1, and h(y) = 0.

3.1. From nonadaptive local monotonicity filters to 2-TC-spanners.
Theorem 1.4 (restated). Let Gn = (Vn, En) be a poset on n nodes. Suppose there

is a nonadaptive local monotonicity filter A for Gn that looks up at most �(n) values
on any query and has error probability at most δ. Then there is a 2-TC-spanner of
Gn with O(n�(n) · 	 logn

log(1/δ)
) edges.
Proof. Let A be a local filter given by the statement of the theorem. Let F be

the set of pairs (x, y) with x, y in Vn such that x ≺ y. Then F is of size at most(
n
2

)
. Given (x, y) ∈ F , let cube(x, y) be the set {z ∈ Vn : x � z � y}. Define function

f (x,y)(v) to be 1 on all v � x, and 0 everywhere else. Also, define function f (x,y)(v),
which is identical to f (x,y)(v) for all v /∈ cube(x, y) and 0 for v ∈ cube(x, y). Functions
f (x,y) and f (x,y) are illustrated in Figure 3.1. For all (x, y) ∈ F , both functions are
monotone.

Let Aρ be the deterministic algorithm which runs A with the random seed fixed
to ρ. We say a string ρ is good for (x, y) ∈ F if the filter Aρ on input f (x,y) returns
g = f (x,y) and on input f (x,y) returns g = f (x,y).

Now we show that there exists a set S of size s = 	 2 log n
log(1/2δ)
, consisting of strings

that A uses as random seeds, such that for every (x, y) ∈ F some string ρ ∈ S is
good for (x, y). We choose S by picking strings used as random seeds uniformly and
independently at random. Since A has error probability at most δ, we know that for
every monotone f , with probability at least 1 − δ (with respect to the choice of ρ),
the function Af,ρ is identical to f . Then for a fixed pair (x, y) ∈ F and a uniformly
random string ρ,

Pr[ρ is not good for (x, y)] ≤ Pr[Aρ on input f (x,y) fails to output f (x,y)]

+ Pr[Aρ on input f (x,y) fails to output f (x,y)] ≤ 2δ.

Since strings in S are chosen independently, Pr[no ρ ∈ S is good for (x, y)] ≤ (2δ)s.
For s = 	 2 logn

log(1/2δ)
, this expression is equal to 1
n2 < 1

|F| . By a union bound over F ,

Pr[for some (x, y) ∈ F , no ρ ∈ S is good for (x, y)] < 1.

Thus, there exists a set S with the required properties.
We construct our 2-TC-spanner H = (Vn, EH) of Gn using the set S described

above. Let Nρ(x) be the set consisting of x and all vertices looked up by Aρ on
query x. (Note that, given x and ρ, the lookups made by the algorithm are the same
for all input functions f , since A is nonadaptive.) For each string ρ ∈ S and each
vertex x ∈ Vn, connect x to all comparable vertices in Nρ(x) (other than itself) and

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 627

orient these edges according to the partial order of Gn: that is, from smaller to larger
elements. (Recall that we identify poset elements with the corresponding vertices of
the relation graph.)

We prove that H is a 2-TC-spanner of Gn as follows. Suppose not, i.e., that
there exists (x, y) ∈ F with no path of length at most 2 in H from x to y. Then
we will show that for some input function h(v) and some random seed ρ the output
function Ah,ρ(v) is not monotone, reaching a contradiction. Consider ρ ∈ S, which
is good for (x, y). Define function h by setting h(v) = f (x,y)(v) for all v /∈ cube(x, y).
Then h(v) = f (x,y)(v) for all v /∈ cube(x, y), by the definition of f (x,y). For a vertex
v ∈ cube(x, y), set h(v) to 1 if v ∈ Nρ(x) and to 0 if v ∈ Nρ(y). All unassigned
values are set to 0. By the assumption above, Nρ(x) ∩ Nρ(y) does not contain any
vertices in cube(x, y). Therefore, h is well-defined. See the third item in Figure 3.1
for an illustration of h. Since ρ is good for (x, y) and h is identical to f (x,y) for all
lookups performed by Aρ on query x, the output Aρ(x) = h(x) = 1. Similarly, h
is identical to f (x,y) for all lookups performed by Aρ on query y and, consequently,
Aρ(y) = h(y) = 0. But x ≺ y, so Ah,ρ(v) is not monotone, which contradicts the fact
that A is a local monotonicity filter.

The number of edges in H is at most

∑
x∈Vn,ρ∈S

|Nρ(x)| ≤ n · �(n) · s = n�(n) ·
⌈

2 logn

log(1/2δ)

⌉
.

3.2. From adaptive local monotonicity filters to 2-TC-spanners. The
complication in the transformation from an adaptive filter is that the set of vertices
looked up by the filter depends on the oracle on which the filter is invoked.

Theorem 1.5 (restated). Let Gn = (Vn, En) be a poset on n nodes. Suppose there
is an (adaptive) local monotonicity filter A for Gn that, for every query x ∈ Vn, looks
up at most �1(n) vertices comparable to x and at most �2(n) vertices incomparable
to x, and has error probability at most δ. Then there is a 2-TC-spanner of Gn with
O(n�1(n) · 2�2(n)	 logn

log(1/δ)
) edges.
Proof. Define F , f (x,y), f (x,y), Aρ, and S as in the proof of Theorem 1.4. As

before, for each x ∈ Vn, we define sets Nρ(x) and construct the 2-TC-spanner H by
connecting each x to comparable elements in Nρ(x) for all ρ ∈ S and orienting the
edges according to the partial order of Gn: from smaller to larger elements. However,

nowNρ(x) is a union of several setsN b,w
ρ (x), indexed by b ∈ {0, 1} and w ∈ {0, 1}�2(n).

For each x ∈ Vn, b ∈ {0, 1}, and w ∈ {0, 1}�2(n), let N b,w
ρ (x) ⊆ Vn be the set consisting

of x and all vertices looked up by Aρ on query x, assuming that the oracle answers
all lookups as follows. When a lookup y is comparable to x, it answers 0 if y ≺ x, b
if y = x, and 1 if x ≺ y. Otherwise, if y is the ith lookup made to an incomparable
vertex for some i ∈ [�2], it answers w[i]. As we mentioned, Nρ(x) is the union of the

sets N b,w
ρ (x) over all b ∈ {0, 1} and w ∈ {0, 1}�2(n). This completes the description of

Nρ(x) and the construction of H .
We demonstrate that H is a 2-TC-spanner as in the proof of Theorem 1.4. In

particular, the pair of vertices x ≺ y, the string ρ, and the function h are defined as
before, and the contradiction is reached by demonstrating that Ah,ρ(x) = h(x) = 1
and Ah,ρ(y) = h(y) = 0. The only difference is in the argument that h is identical
to f (x,y) for all lookups performed by Aρ on query x, and to f (x,y) for all lookups on
query y. The caveat is that an adaptive local filter might choose lookups based on
the answers to previous lookups.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

628 BHATTACHARYYA ET AL.

First, consider the behavior of Aρ on query x. Since h(v) may be different from
f (x,y)(v) only for vertices v in cube(x, y), but not in Nρ(x), the filter Aρ can detect
a difference between the two functions only if it looks up such a vertex. Suppose, for
the sake of contradiction, that Aρ looks up a vertex like that on query x, and let v
be the the first such lookup. The filter receives the following answers to the lookups
preceding v from the oracle for function h: 1 if the lookup is x or above x, and 0
if the lookup is below x or incomparable to x. Let w be a string of �2 zeros. Then
v ∈ N 1,w

ρ (x) ⊆ Nρ(x), a contradiction.
Second, consider the behavior of Aρ on query y. Suppose, for the sake of contra-

diction, that Aρ on query y looks up a vertex cube(x, y), but not in Nρ(y), and let
v be the first such lookup. The filter receives the following answers to the lookups
preceding v from the oracle for function h: 1 if the lookup is above y, 0 if the lookup
is y or below y, and either 1 or 0 if it is incomparable to y (depending on whether
it is above x or incomparable to x). Consider a binary string recording the answers
on lookups to vertices incomparable to y, prior to the lookup v. Append zeros at the
end of that string to obtain a string of length �2(n). Call the resulting string w. Then
v ∈ N 0,w

ρ (y) ⊆ Nρ(x), a contradiction.
We proved that Ah,ρ(x) = h(x) = 1 and Ah,ρ(y) = h(y) = 0. Therefore, Ah,ρ(v)

is not monotone, which contradicts the fact that A is a local monotonicity filter. We
conclude that H is a 2-TC-spanner of Gn.

We proceed to bound the number of edges EH in H . For each ρ ∈ S, x ∈ Vn,

b ∈ {0, 1}, and w ∈ {0, 1}�2(n), the number of vertices in Nρ
b,w(x) comparable to x is

at most �1(n). Therefore,

|EH | ≤ n · �1(n) · 2 · 2�2(n) · |S| ≤ O

(
n · �1(n) · 2�2(n)

⌈
logn

log(1/δ)

⌉)
.

4. 2-TC-spanners of low-dimensional hypergrids. In this section, we de-
scribe the proof of Theorem 1.8, which gives explicit bounds on the size of the sparsest
2-TC-spanner of Hd

m. The upper bound in Theorem 1.8 is proved in section 4.1, and
the lower bound in section 4.2.

4.1. An upper bound for low-dimensional hypergrids. The upper bound
in Theorem 1.8 is a straightforward consequence of a more general statement about
TC-spanners of product graphs presented in section 4.1.1. The upper bound in The-
orem 1.8 is derived in section 4.1.2.

4.1.1. A k-TC-spanner construction for product graphs. This section
explains how to construct a TC-spanner of the Cartesian product of graphs G1 and
G2 from TC-spanners of G1 and G2. Since the directed hypergrid is the Cartesian
product of directed lines, and an optimal TC-spanner construction is known for the
directed line, our construction yields a sparse TC-spanner of the grid (Corollary 4.3).

We start by defining two graph products: Cartesian and strong. See Figure 4.1.
Definition 4.1 (graph products). Given graphs G1 = (V1, E1) and G2 =

(V2, E2), a product of G1 and G2 is a new graph G with the vertex set V1 × V2.
For the Cartesian graph product, denoted by G1×G2, graph G contains an edge from
(u1, u2) to (v1, v2) iff u1 = v1 and (u2, v2) ∈ E2, or (u1, v1) ∈ E1 and u2 = v2. For
the strong graph product, denoted by G1 ◦G2, graph G contains an edge from (u1, u2)
to (v1, v2) iff the rules for the Cartesian product are satisfied, or (u1, v1) ∈ E1 and
(u2, v2) ∈ E2.

For example, H2
m = H1

m×H1
m and TC(H2

m) = TC(H1
m)◦TC(H1

m), where TC(G)
denotes the transitive closure of G. Now, we make the following observation.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 629

x =

o =

Fig. 4.1. Graph products: Cartesian (top) and strong (bottom).

Lemma 4.2. Let G1 and G2 be directed graphs with k-TC-spanners H1 and H2,
respectively. Then H1 ◦H2 is a k-TC-spanner of G = G1 ×G2.

Proof. Suppose (u, v) and (u′, v′) are comparable vertices in G1×G2. Then by the
definition of the Cartesian product, u � u′ in G1 and v � v′ in G2. Let (u1, u2, . . . , u�)
be the shortest path in H1 from u = u1 to u′ = u�, and let (v1, v2, . . . , vt) be the
shortest path in H2 from v = v1 to v′ = vt. Then � ≤ k and t ≤ k, by the def-
inition of a k-TC-spanner. Assume without loss of generality that � ≤ t. Then
((u1, v1), (u2, v2), . . . , (u�, v�) . . . , (u�, vt)) is a path in H1 ◦ H2 of length at most k
from (u, v) to (u′, v′). Therefore, H1 ◦H2 is a k-TC-spanner of G = G1 ×G2.

4.1.2. A k-TC-spanner construction for the directed hypergrids. Lemma
4.2, together with the previous results on the size of k-TC-spanners of the line H1

m,
summarized in Lemma 1.10, implies an upper bound on the size of a k-TC-spanner
of the directed hypergrid Hd

m.
Corollary 4.3. Let Sk(Hd

m) denote the number of edges in the sparsest k-TC-
spanner of the directed d-dimensional hypergrid Hd

m.
(i) Then Sk(Hd

m) = O(mdλk(m)dcd) for an appropriate constant c.
(ii) More precisely, S2(Hd

m) ≤ md logd m for m ≥ 3.
Proof. Let H = ([m], E) be a k-TC-spanner of the line H1

m with O(mλk(m))
edges, given by Lemma 1.10. By Lemma 4.2, the graph H ◦ · · · ◦H , where the strong
graph product is applied d times, is a k-TC-spanner of the directed hypergrid Hd

m. By
the definition of the strong graph product, the number of edges in this k-TC-spanner
is (|E| + m)d − md = O(mdλk(m)dcd) for an appropriate constant c, as claimed in
part (i) of the corollary.

The more precise statement for k = 2 in part (ii) follows from Claim 4.1 below,
which gives a more careful analysis of the size of the sparsest 2-TC-spanner of the
line. Specifically, it shows that S2(H1

m) ≤ m logm−m for m ≥ 3.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

630 BHATTACHARYYA ET AL.

Fig. 4.2. An illustration for the proof of the lower bound on the size of a 2-TC-spanner for the
line.

Claim 4.1. For all m ≥ 3, the directed line H1
m has a 2-TC-spanner with at most

m logm−m edges.
Proof. Construct a graph H on the vertex set [m] recursively. First, define the

middle node vmid = 	m
2
. Add edges (v, vmid) for all nodes v < vmid and edges

(vmid, v) for all nodes v > vmid. Then recurse on the two line segments resulting from
removing vmid from the current line. Proceed until each line segment contains exactly
one node.

H is a 2-TC-spanner of the line H1
m, since every pair of nodes u, v ∈ [m] is

connected by a path of length at most 2 via a middle node. This happens in the stage
of the recursion where u and v are separated into different line segments, or one of
these two nodes is removed.

There are t = �logm� stages of the recursion, and in each stage i ∈ [t] each
node that is not removed by the end of the this stage connects to the middle node
in its current line segment. Since 2i−1 nodes are removed in the ith stage, exactly
m− (2i − 1) edges are added in that stage. Thus, the total number of edges in H is
m · t− (2t+1 − t− 2) ≤ m logm−m. The last inequality holds for m ≥ 3.

4.2. A lower bound for low-dimensional hypergrids. In this section, we
show the lower bound on S2(Hd

m) stated in Theorem 1.8. We first treat the special
case of this lower bound for d = 2, since it captures many ideas needed to prove the
general bound and is significantly easier to understand. The extension to arbitrary
dimension is presented in the subsequent section.

4.2.1. A lower bound for d = 2. In this section, we prove a lower bound on
the size of a 2-TC-spanner of the 2-dimensional directed grid, stated in Theorem 4.4.
This is a special case of the lower bound in Theorem 1.8.

Theorem 4.4. The number of edges in a 2-TC-spanner of the 2-dimensional grid
H2

m is

Ω

(
m2 log2 m

log logm

)
.

One way to prove the Ω(m logm) lower bound on the size of a 2-TC-spanner of
the directed line H1

m, stated in Lemma 1.10, is to observe that at least �m
2 � edges are

cut when the line is halved: namely, at least one per vertex pair (v,m− v+ 1) for all
v ∈ [�m

2 �
]
. This is depicted in Figure 4.2. Continuing to halve the line recursively,

we obtain the desired bound.
A natural extension of this approach to proving a lower bound for the grid is to

recursively halve the grid along both dimensions, hoping that each such operation on
an m×m grid cuts Ω(m2 logm) edges. This would imply that the size S(m) of a 2-
TC-spanner of the m×m grid satisfies the recurrence S(m) = 4S(m/2)+Ω(m2 logm),
that is, S(m) = Ω(m2 log2 m), matching the upper bound in Theorem 1.8.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 631

Fig. 4.3. A 2-TC-spanner of the grid with O(m2) edges connecting vertices in different quarters.
In addition to the depicted edges, it contains a transitive closure of each quarter and an edge from
each vertex in the lower left quarter to the smallest vertex of the upper right quarter.

An immediate problem with this approach, as shown in Figure 4.3, is that in some
2-TC-spanners of the grid, only O(m2) edges connect vertices in different quarters.
One example of such a 2-TC-spanner is the graph containing the transitive closure
of each quarter and only at most 3m2 edges crossing from one quarter to another:
namely, for each node u and each quarter q with vertices above u, this graph contains
an edge (u, vq), where vq is the smallest node above u in q.

The TC-spanner in the example above is not optimal, because it has too many
edges inside the quarters. The first step in our proof of Theorem 4.4 is understanding
the trade-off between the number of edges crossing the cut and the number of edges
internal to the subgrids, resulting from halving the grid along some dimension. The
simplest manifestation of this trade-off occurs when a 2 ×m grid is halved into two
lines. (In the case of one line, there is no trade-off: the Ω(m) bound on the number of
crossing edges holds even if each half-line contains all edges of its transitive closure.)
Lemma 4.5 formulates the trade-off for the two-line case, while taking into account
only edges needed to connect comparable vertices on different lines by paths of length
at most 2.

Lemma 4.5 (two-lines lemma). Let U be a graph with the vertex set [2] × [m]
that contains a path of length at most 2 from u = (u1, u2) to v = (v1, v2) for every
u ∈ {1} × [m] and v ∈ {2} × [m], where u � v. An edge (u, v) in U is called internal

if u1 = v1, and crossing otherwise. If U contains at most m log2 m
32 internal edges, it

must contain at least m logm
16 log logm crossing edges.

Note that if the number of internal edges is unrestricted, a 2-TC-spanner of H2
m

may have only m crossing edges.
Proof. The proof proceeds in logm

2 log logm stages dealing with pairwise disjoint sets
of crossing edges. In each stage, we show that U contains at least m

8 crossing edges
in the prescribed set.

In the first stage, divide U into log2 m blocks, each of length m
log2 m

: namely, a

node (v1, v2) is in block i if

v2 ∈
[
(i− 1) ·m
log2 m

+ 1,
i ·m
log2 m

]
.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

632 BHATTACHARYYA ET AL.

L

R
midline

high nodes &
internal edges

left nodes right nodes

block
long internal edge

low nodes &
internal edges

u

v

Fig. 4.4. An illustration of the first stage in the proof of Lemma 4.5.

Call an edge long if it starts and ends in different blocks, and short otherwise. Assume,
for contradiction, that U contains fewer than m

8 long crossing edges.
Call a node (v1, v2) low if v1 = 1 (high if v1 = 2), and left if v2 ∈ [m2] (right

otherwise). Also, call an edge (u, v) low-internal if u1 = v1 = 1 and high-internal
if u1 = v1 = 2. Let L be the set of low left nodes that are not incident to long
crossing edges. Similarly, let R be the set of high right nodes that are not incident to
long crossing edges. Since there are fewer than m

8 long crossing edges, |L| > m
4 and

|R| > m
4 .

A node u ∈ L can connect to a node v ∈ R via a path of length at most 2 only
by using a long internal edge. Observe that each long low-internal edge can be used
by at most m

log2 m
such pairs (u, v): one low node u and high nodes v from one block.

This is illustrated in Figure 4.4. Analogously, every long high-internal edge can be

used by at most m
log2 m

such pairs. Since |L| · |R| > m2

16 pairs in L × R connect via

paths of length at most 2, the graph U contains more than m2

16 /
m

log2 m
= m log2 m

16 long

internal edges, which is a contradiction.
In each subsequent stage, call blocks used in the previous stage megablocks, and

denote their length by B. Subdivide each megablock into log2 m blocks of equal
size. Call an edge long if it starts and ends in different blocks but stays within one
megablock. Assume, for contradiction, that U contains fewer than m

8 long crossing
edges.

Call a node (v1, v2) left if it is in the left half of its megablock, that is, if v2 ≤ �+r
2

whenever (v1, v2) is in a megablock [2]×{�, . . . , r}. (Call it right otherwise.) Consider
megablocks containing fewer than B

4 long crossing edges each. By an averaging argu-
ment, at least m

2B megablocks are of this type. (Recall that there are m
B megablocks

overall.) Within each such megablock more than B
4 low left nodes and more than

B
4 high right nodes have no incident long crossing edges. By the argument from the

first stage, each such megablock contributes more than B2

16b long internal edges, where

b = B
log2 m

is the size of the blocks. Hence, there must be more than B2

16b · m
2B = m log2 m

32

long internal edges, which is a contradiction to the fact that U contains at most
m log2 m

32 internal edges.
We proceed to the next stage until each block is of length 1. Therefore, the

number of stages, t, satisfies m
log2t m

= 1. That is, t = logm
2 log logm , and each stage

contributes m
8 new crossing edges, as desired.

Next we generalize Lemma 4.5 to understand the trade-off between the number of
internal edges and crossing edges resulting from halving a 2-TC-spanner of a 2�×m

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 633

H H
Fig. 4.5. An illustration for the proof of Lemma 4.6: an example transformation from H to

H′. Arches to the left of each panel connect matched lines.

grid with the usual partial order.
Lemma 4.6. Let H be a 2-TC-spanner of the directed [2�] × [m] grid. An edge

(u, v) in H is called internal if u1, v1 ∈ [�] or u1, v1 ∈ {�+ 1, . . . , 2�}, and crossing

otherwise. If H contains at most �m log2 m
64 internal edges, it must contain at least

�m logm
32 log logm crossing edges.

Proof. For each i ∈ [�], we match the lines {i} × [m] and {2� − i + 1} × [m].
Observe that a path of length at most 2 between the matched lines cannot use any
edges with both endpoints in {i + 1, . . . , 2�− i} × [m]. We modify H to ensure that
there are no edges with only one endpoint in {i + 1, . . . , 2� − i} × [m] for all i ∈ [�],
and then apply Lemma 4.5 to the matched pairs of lines.

Call the [�] × [m] subgrid and all vertices and edges it contains low, and the
remaining {� + 1, . . . , 2�} × [m] subgrid and its vertices and edges high. Transform
H into H ′ as follows: change each low internal edge (u, v) to (u, (u1, v2)), change
each high internal edge (u, v) to ((v1, u2), v), and finally change each crossing edge
((i1, j1), (2�− i2 +1, j2)) to ((i, j1), (2�− i+1, j2)), where i = min(i1, i2). Intuitively,
we are projecting the edges in H to be fully contained in one of the matched pairs
of lines, while preserving whether the edge is internal or crossing. Crossing edges are
projected onto the outer matched pair of lines chosen from the two pairs that contain
the endpoints of a given edge. See Figure 4.5 for an illustration of the transformation.

The new graph H ′ has several important properties:
• H ′ contains at most as many internal (respectively, crossing) edges as H .
• H ′ contains a path of length at most 2 from u to v for every comparable
pair (u, v), where u is low, v is high, and u and v belong to the same pair
of matched lines. Indeed, since H is a 2-TC-spanner, it contains either the
edge (u, v) or a path (u,w, v). In the first case, H ′ also contains (u, v).
In the second case, if (u,w) is a crossing edge, then H ′ contains the path
(u, (v1, w2), v), and if (u,w) is an internal edge, then H ′ contains the path
(u, (u1, w2), v).

• For each edge in H ′, both endpoints belong either to the same line or to two
matched lines. This implies that a path between two vertices that belong to
the same pair of matched lines can use only vertices from these two lines as
intermediate points, enabling us to apply the two-lines lemma (Lemma 4.5)
to each matched pair of lines independently.

Finally, we apply Lemma 4.5. If H contains at most �m log2 m
64 internal edges, then

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

634 BHATTACHARYYA ET AL.

so does H ′, and so at least half (i.e., �
2) of the matched line pairs each contain at

most m log2 m
32 internal edges. By Lemma 4.5, each of these pairs contributes at least

m logm
16 log logm crossing edges. Thus, H ′ must contain at least �m logm

32 log logm crossing edges.

Since H contains at least as many crossing edges as H ′, the lemma follows.
Now we prove Theorem 4.4 by recursively halvingH2

m along the horizontal dimen-
sion. We show that either at one of the recursive steps at least half of the resulting
subgrids have many internal edges, or at each recursive step at least half the subgrids
have few internal edges. In the second case, we apply Lemma 4.6 to such subgrids,
concluding that they contribute large, pairwise disjoint sets of crossing edges.

Proof of Theorem 4.4. Assume for simplicity that m is a power of 2.
For each step i ∈ [12 logm], partition H2

m into the following 2i−1 equal-sized
subgrids: {1, . . . , li} ×[m], {li + 1, . . . , 2li} × [m], . . . , {m − li + 1, . . . ,m} × [m],
where li =

m
2i−1 . For each of these subgrids, define internal and crossing edges as in

Lemma 4.6.
First, consider the case when for some step i at least half of the 2i−1 subgrids

have more than lim log2 m
64 internal edges. Since at a fixed step i the subgrids are

pairwise disjoint, there are 2i−1 · Ω(lim log2 m) = Ω(m2 log2 m) edges in H , proving
the theorem.

If the case above does not hold, then for every i ∈ [12 logm] at least half of the

2i−1 subgrids have at most lim log2 m
64 internal edges. Then by Lemma 4.6, the number

of crossing edges in each such subgrid is at least lim logm
32 log logm . Observe that the sets of

crossing edges in different steps are pairwise disjoint. Counting over all steps i and
for all appropriate subgrids from those steps, the number of edges in H is bounded
by

Ω

(
m2 logm

logm

log logm

)
= Ω

(
m2 log2 m

log logm

)
.

4.2.2. A lower bound for general d. In this section, we extend the above
proof to establish lower bounds on S2(Hd

m) for arbitrary d ≥ 2. The following theorem
implies the lower bound expression in Theorem 1.8.

Theorem 4.7. The number of edges in a 2-TC-spanner of the d-dimensional
hypergrid Hd

m (where d < 2 logm
log logm) is at least

md

64

logdm

(2d log logm)d−1
.

The main ingredient in the proof is the two-hyperplanes lemma, an analogue of the
two-lines lemma (Lemma 4.5) for d dimensions. The difficulty in extending the proof
of the two-lines lemma to work for two hyperplanes is in generalizing the definitions of
blocks and megablocks, so that, on the one hand, each stage in the proof contributes
a substantial number of crossing edges and, on the other hand, the crossing edges
contributed in separate stages are pairwise disjoint.

Lemma 4.8 (two-hyperplanes lemma). Let U be a graph with the vertex set
[2] × [m]d−1 that contains a path of length at most 2 from u to v for every u ∈
{1}× [m]d−1 and v ∈ {2}× [m]d−1, where u � v. As in Lemma 4.5, an edge (u, v) in
U is called internal if u1 = v1, and crossing otherwise. Then if U contains less than
md−1 logd m
(d−1)22d+3 internal edges, it must contain at least

md−1

8

(
logm

2d log logm

)d−1D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 635

crossing edges.
Proof. As for Lemma 4.5, the proof proceeds in several stages. The stages are

indexed by (d− 1)-tuples i in {0, 1, . . . , logm
d log logm − 1}d−1. Consequently, the number

of stages is (
logm

d log logm

)d−1

.

We will show that each stage contributes at least md−1

2d+2 separate edges to the set of
crossing edges, thus proving our lemma.

As in the proof of Lemma 4.5, at each stage vertices are partitioned into megablocks
and blocks. In stage i = (i1, . . . , id−1), we partition U into (logm)d(i1+···+id−1) equal-
sized megablocks indexed by b = (b1, . . . , bd−1), where bj ∈ [logd·ij m] for all j ∈ [d−1].

A vertex v is in a megablock b if

vj+1 ∈
[
(bj − 1)

m

logdij m
+ 1, bj

m

logdij m

]

for each j ∈ [d − 1]. So, initially when i = 	0, there is only one megablock, and each
time i increases by 1 in one coordinate, the volume of the megablocks shrinks by a
factor of logd m. (The volume of a megablock is equal to the number of vertices it
contains.)

Each megablock b is further partitioned into (logm)d(d−1) equal-sized blocks in-
dexed by c ∈ [logd m]d−1.

A vertex v in a megablock b lies in block c if for each j ∈ [d− 1],

(v − bmin)j+1 ∈
[
(cj − 1)

�j

logdm
+ 1, cj

�j

logd m

]
,

where bmin denotes the smallest vertex in megablock b and �j denotes the length of b
in the the jth dimension. Note that vertices (1, v2, . . . , vd) and (2, v2, . . . , vd) belong
to the same (mega)block. At the last stage, each block contains only two vertices
(differing by the first coordinate).

Next, we specify the set of crossing edges contributed at each stage. A crossing
edge (u, v) in U is said to be long in stage i if the following hold:

(i) u and v lie in the same megablock, and
(ii) if u lies in block (c1, . . . , cd−1) and v lies in block (c′1, . . . , c

′
d−1), then cj < c′j

for all j ∈ [d− 1].
We claim that if i �= i′, the sets of long crossing edges in stages i and i′ are disjoint.
To see this, let j be an index such that ij �= i′j ; suppose without loss of generality
that ij < i′j . Then the length of the megablocks in the jth dimension for stage i′ is at
most the length of the blocks in the jth dimension for stage i. Hence, condition (ii)
above implies that long crossing edges in stage i must have endpoints in different
megablocks of stage i′, and so violate condition (i) for being a long crossing edge in
stage i′.

It remains to show that every stage contributes at least md−1

2d+2 long crossing edges.
For the sake of contradiction, suppose that the number of long crossing edges at some

stage i is less than md−1

2d+2 . Let

B =
md−1

(logm)d(i1+···+id−1)

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

636 BHATTACHARYYA ET AL.

be the volume of the megablocks restricted to one of the two hyperplanes. By an

averaging argument, at least md−1

2B megablocks contain fewer than B
2d+1 long crossing

edges (otherwise, there would be at least md−1

2d+2 long crossing edges). But we show

next that if a megablock contains fewer than B
2d+1 long crossing edges, then there

are at least B logd m
(d−1)22d+2 internal edges with both endpoints inside the megablock. This

would imply that the total number of internal edges is at least

md−1

2B
· B logd m

(d− 1)22d+2
=

md−1 logdm

(d− 1)22d+3
,

a contradiction.
Suppose then that a megablock contains fewer than B

2d+1 long crossing edges. Let
Low be the set of vertices in the megablock with each coordinate at most the average
value of that coordinate in the megablock, and High the set of vertices with each
coordinate greater than the average value of that coordinate. Then

|Low| ≥ B

2d
and |High| ≥ B

2d
,

and each vertex in Low is comparable to each vertex in High. By the bound on the
number of long crossing edges, there must exist a set L of at least B

2d+1 vertices in

Low not incident to any long crossing edge, and a set R of at least B
2d+1 vertices in

High not incident to any long crossing edges. L lies in the lower hyperplane, R in
the upper hyperplane, and each vertex in L is comparable to each vertex in R. Call
a crossing edge short if it satisfies condition (i) but violates condition (ii) above. A
path in U of length at most 2 from a vertex in L to a vertex in R must consist of
one internal edge and one short crossing edge. The number of short crossing edges
incident to a given vertex v is at most (d− 1) B

logd m
, by counting, for each of the d− 1

block indices, the number of vertices in the megablock that share the value of that
block index with v. So, each internal edge helps connect at most (d − 1) B

logd m
pairs

of vertices. Since B2

22d+2 pairs of vertices need to be connected by a path, there must
exist at least

B2

22d+2
· logdm

(d− 1)B
=

B logdm

(d− 1)22d+2

internal edges.
The analogue of Lemma 4.6 in d dimensions (Lemma 4.9) and the rest of the

proof of Theorem 4.7 are straightforward generalizations of the 2-dimensional case.
Lemma 4.9. Let H be a 2-TC-spanner of the directed [2�]× [m]d−1 grid. An edge

(u, v) in H is called internal if u1, v1 ∈ [�] or u1, v1 ∈ {�+ 1, . . . , 2�}, and crossing

otherwise. If H contains fewer than �md−1 logd m
(d−1)22d+4 internal edges, it must contain at

least

�

16

(
m logm

2d log logm

)d−1

crossing edges.
Proof. We can generalize the proof of Lemma 4.6 in a straightforward way. For

each i ∈ [�], instead of matching the lines, we match the hyperplanes {i}× [m]d−1 and

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 637

{2�−i+1}× [m]d−1. The rest of the proof follows an argument identical to that in the
proof of Lemma 4.6. Still, we repeat the argument here for the sake of completion. For
this proof, we define some additional notation. Given vertex v = (v1, . . . , vd) ∈ [m]d,
let v2 denote (v2, v3, . . . , vd). Further, for v2 = (v2, v3, . . . , vd) let (v1,v2) denote the
vertex v = (v1, . . . , vd).

Now, observe that a path of length at most 2 between the matched hyperplanes
cannot use any edges with both endpoints in {i+1, . . . , 2�−i}× [m]d−1. We modify H
to ensure that there are no edges with only one endpoint in {i+1, . . . , 2�− i}× [m]d−1

for all i ∈ [�], and then apply Lemma 4.8 to the matched pairs of hyperplanes.
Call the [�] × [m]d−1 subgrid and all vertices and edges it contains low, and the

remaining {�+1, . . . , 2�}× [m]d−1 subgrid and its vertices and edges high. Transform
H into H ′ as follows: change each low internal edge (u, v) to (u, (u1,v2)), change
each high internal edge (u, v) to ((v1,u2), v), and finally change each crossing edge
((u1,u2), (2�− v1 + 1,v2)) to ((t1,u2), (2�− t1 + 1,v2)), where t1 = min(u1, v1). In-
tuitively, we are projecting the edges in H to be fully contained in one of the matched
pairs of hyperplanes, while preserving whether the edge is internal or crossing. Cross-
ing edges are projected onto the outer matched pair of hyperplanes chosen from the
two pairs that contain the endpoints of a given edge. See Figure 4.5 for an illustration
of the transformation for the case when d = 2.

The new graph H ′ has several important properties:
• H ′ contains at most as many internal (respectively, crossing) edges as H .
• H ′ contains a path of length at most 2 from u to v for every comparable
pair (u, v), where u is low, v is high, and u and v belong to the same pair of
matched hyperplanes. Indeed, since H is a 2-TC-spanner, it contains either
the edge (u, v) or a path (u,w, v). In the first case, H ′ also contains (u, v).
In the second case, if (u,w) is a crossing edge, then H ′ contains the path
(u, (v1,w2), v), and if (u,w) is an internal edge, then H ′ contains the path
(u, (u1,w2), v).

• For each edge in H ′, both endpoints belong either to the same hyperplane or
to two matched hyperplanes. This implies that a path between two vertices
that belong to the same pair of matched hyperplanes can use only vertices
from these two hyperplanes as intermediate points, enabling us to apply the
two-hyperplanes lemma (Lemma 4.8) to each matched pair of hyperplanes
independently.

Finally, we apply Lemma 4.8. If H contains at most md−1 logd m
(d−1)22d+4 internal edges,

then so doesH ′, and so at least half (i.e., �
2) of the matched hyperplane pairs each con-

tain at most md−1 logd m
(d−1)22d+3 internal edges. By Lemma 4.8, each of these pairs contributes

at least

md−1

8

(
logm

2d log logm

)d−1

crossing edges. Thus, H ′ must contain at least

�

16

(
m logm

2d log logm

)d−1

crossing edges. Since H contains at least as many crossing edges as H ′, the lemma
follows.

Proof of Theorem 4.7. For simplicity, assume that m is a power of 2.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

638 BHATTACHARYYA ET AL.

For each step i ∈ [12 logm], partition Hd
m into the following 2i−1 equal-sized

subgrids: {1, . . . , li} ×[m]d−1, {li+1, . . . , 2li} × [m]d−1, . . . , {m−li+1, . . . ,m}×[m]d,
where li =

m
2i−1 . For each of these subgrids, define internal and crossing edges as in

Lemma 4.9. Now, suppose that there exists a step i such that at least half of the

2i−1 subgrids have at least lim
d−1 logd m

(d−1)22d+3 internal edges. Since, at a fixed step i, the

subgrids are pairwise disjoint, there are at least 2i−2 lim
d−1 logd m

(d−1)22d+3 = md logd m
(d−1)22d+4 edges in

H , which is enough to prove the theorem. On the other hand, suppose that for every

i ∈ [12 logm] at least half of the 2i−1 subgrids have less than lim
d−1 logd m

(d−1)22d+3 internal

edges. Then, by Lemma 4.9, the number of crossing edges in each such subgrid is at
least

lim
d−1

16

(
logm

2d log logm

)d−1

.

Counting over all steps i and for all appropriate subgrids from those steps, the number
of edges in H is at least

logm

2
· 2i−2 · lim

d−1

16

(
logm

2d log logm

)d−1

=
md

64

logdm

(2d log logm)d−1
.

5. 2-TC-spanners of the hypercube. In this section, we prove Theorem 1.9;
that is, we analyze the size of the sparsest 2-TC-spanner of the d-dimensional hyper-
cube Hd. Lemma 5.1 presents the upper bound on S2(Hd). Lemma 5.2 presents the
lower bound. The upper and lower bounds differ by only a factor of O(d3), and are
dominated by the same combinatorial expression. A numerical approximation to this
expression is given in Lemma 5.3. Remark 5.1 at the end of the section explains why
our randomized construction in Lemma 5.1 yields a 2-TC-spanner of Hd of size within
O(d2) of the optimal.

5.1. Upper bound.
Lemma 5.1. There is a 2-TC-spanner of Hd with

O

(
d3 max

i,j:i<j
min

k:i≤k≤j

(
d
k

)
(
j−i
k−i

) max

{(
k

i

)
,

(
d− k

d− j

)})
edges.

Proof. Consider the following probabilistic construction that connects all compa-
rable vertices in levels i and j of Hd by paths of length at most 2.

Given levels i, j ∈ {0, 1, . . . , d}, i < j,
1. Initialize the set Ei,j to ∅.
2. Let ki,j = argmin

k:i≤k≤j

(
(dk)
(j−i
k−i)

max
{(

k
i

)
,
(
d−k
d−j

)})
.

3. Let Si,j be a set of 3d
(dk)
(j−i
k−i)

vertices chosen uniformly at random

from the
(
d
k

)
vertices in level k = ki,j .

4. For each vertex v ∈ Si,j , set Ei,j to

Ei,j ∪ {(x, v) : |x| = i ∧ x ≺ v} ∪ {(v, y) : |y| = j ∧ v ≺ y}.

That is, connect v to all comparable vertices in levels i and j.
5. Output Ei,j .

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 639

Claim 5.1. For all 0 ≤ i < j ≤ d, with probability at least 1
2 , the edge set Ei,j

contains a path of length at most 2 between every pair of vertices (x, y) such that
x ≺ y, |x| = i, and |y| = j.

Proof. Consider a pair of vertices (x, y) with x ≺ y such that |x| = i and |y| = j.
The number of vertices in level k that are above x and below y is exactly

(
j−i
k−i

)
.

Therefore, the probability that Si,j does not contain such a vertex is

(
1−

(
j − i

k − i

)/(
d

k

))3d
(dk)
(j−i
k−i) ≤ e−3d.

The number of comparable pairs (x, y) is
(
d
i

)(
d−i
d−j

)
. By a union bound, the probability

that there exists an (x, y) such that no vertex v ∈ Si,j satisfies x ≺ v ≺ y is at most(
d
i

)(
d−i
d−j

)
e−3d ≤ 22de−3d < 1

2 .
Claim 5.1 implies that for every i and j there exists a set Si,j such that all

comparable pairs from the levels i and j are connected by a path of length at most
2 via a vertex in Si,j . Let E∗

i,j be the set of edges returned by the algorithm when

this Si,j is chosen. We set E =
⋃

0≤i<j≤d E
∗
i,j . Then the graph ({0, 1}d, E) is a

2-TC-spanner of Hd.
Now, we show that the size of E is as claimed in the lemma statement. The main

observation is that in step 4, for every v ∈ Si,j , the set

{(x, v) : |x| = i ∧ x ≺ v} ∪ {(v, y) : |y| = j ∧ v ≺ y}

has size
(
ki,j

i

)
+
(
d−ki,j

d−j

) ≤ 2max
{(

ki,j

i

)
,
(
d−ki,j

d−j

)}
. Therefore, for all 0 ≤ i < j ≤ d,

|E∗
i,j | ≤ 3d · 2

(
d

ki,j

)
(

j−i
ki,j−i

) max

{(
ki,j
i

)
,

(
d− ki,j
d− j

)}

= 6d min
k:i≤k≤j

(
d
k

)
(
j−i
k−i

) max

{(
k

i

)
,

(
d− k

d− j

)}
.

Since |E| =
∑

0≤i<j≤d |E∗
i,j |, where the sum has O(d2) terms, the claimed bound

follows.

5.2. Lower bound.
Lemma 5.2. Any 2-TC-spanner of the directed hypercube Hd has

Ω

(
max
i,j:i<j

min
k:i≤k≤j

(
d
k

)
(
j−i
k−i

) max

{(
k

i

)
,

(
d− k

d− j

)})

edges.
Proof. Let H be a 2-TC-spanner of Hd. We will count the edges in H that

occur on paths connecting two particular levels of Hd. Let Pi,j be the pairs {(v1, v2) :
|v1| = i, |v2| = j, v1 ≺ v2}. We will lower bound e∗i,j , the number of edges in the
paths of length at most 2 in H that connect the pairs Pi,j . Let ek,� denote the
number of edges in H that connect vertices in level k to vertices in level �. Then
e∗i,j = ei,j +

∑j−1
k=i+1(ei,k + ek,j).

We say that a vertex v covers a pair of vertices (v1, v2) if H contains the edges

(v1, v) and (v, v2) or, for the special case v = v1, if H contains (v1, v2). Let V
(k)
i,j be

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

640 BHATTACHARYYA ET AL.

the set of vertices of weight k that cover pairs in Pi,j . Let αk be the fraction of pairs

in Pi,j that are covered by a vertex in V
(k)
i,j . Since each pair in Pi,j must be covered

by a vertex in levels i to j − 1,

j−1∑
k=i

αk ≥ 1.

For every vertex v ∈ V
(k)
i,j , let inv be the number of incoming edges from vertices

of weight i incident to v, and let outv be the number of outgoing edges to vertices of

weight j incident to v. For each k ∈ {i + 1, . . . , j − 1}, since each vertex v ∈ V
(k)
i,j

covers inv · outv pairs,

(5.1)
∑

v∈V
(k)
i,j

inv · outv ≥ αk|Pi,j | = αk

(
d

i

)(
d− i

d− j

)
.

We upper bound
∑

v∈V
(k)
i,j

inv · outv as a function of ei,k + ek,j , and then use (5.1) to

lower bound ei,k + ek,j .
For all k ∈ {i + 1, . . . , j − 1}, variables inv and outv satisfy the following con-

straints: ∑
v∈V

(k)
i,j

inv ≤ ei,k + ek,j ,
∑

v∈V
(k)
i,j

outv ≤ ei,k + ek,j ,

inv ≤
(
k

i

)
∀v ∈ V

(k)
i,j , outv ≤

(
d− k

d− j

)
∀v ∈ V

(k)
i,j .

The last two constraints hold because inv and outv count the number of edges to a
vertex of weight k from vertices of weight i and from a vertex of weight k to vertices
of weight j, respectively. Using these bounds, we obtain

∑
v∈V

(k)
i,j

inv · outv ≤
∑

v∈V
(k)
i,j

(
k

i

)
· outv =

(
k

i

)
·
∑

v∈V
(k)
i,j

outv ≤
(
k

i

)
· (ei,k + ek,j).

Similarly,
∑

v∈V
(k)
i,j

inv · outv ≤ (d−k
d−j

)·(ei,k+ek,j). Therefore, for all k ∈ {i+1, . . . , j−
1},

∑
v∈V

(k)
i,j

inv · outv ≤ (ei,k + ek,j)min

{(
k

i

)
,

(
d− k

d− j

)}
.

Let

si,k,j =

(
d
i

)(
d−i
d−j

)
min

{(
k
i

)
,
(
d−k
d−j

)} .
Then (5.1) implies that ei,k + ek,j ≥ αksi,k,j for all k ∈ {i+ 1, . . . , j − 1}. Therefore,

e∗i,j = ei,j +

j−1∑
k=i+1

(ei,k + ek,j) ≥ αi

(
d

i

)(
d− i

d− j

)
+

j−1∑
k=i+1

αksi,k,j ≥
j−1∑
k=i

αksi,k,j

≥ min
k:i≤k≤j

si,k,j .

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 641

Since this holds for arbitrary i and j, the number of edges in the 2-TC-spanner H is
at least

max
i,j:i<j

min
k:i≤k≤j

si,k,j .

Finally, a simple algebraic manipulation finishes the proof.

Claim 5.2. si,k,j =
(dk)
(j−i
k−i)

max
{(

k
i

)
,
(
d−k
d−j

)}
.

Proof. Take the ratio of the two sides:

si,k,j
(dk)
(j−i
k−i)

max
{(

k
i

)
,
(
d−k
d−j

)} =

(
d
i

)(
d−i
d−j

)(
j−i
k−i

)
(
d
k

)(
k
i

)(
d−k
d−j

) =

(
d
i

)(
d−i
j−i

)(
j−i
k−i

)
(
d
k

)(
k
i

)(
d−k
j−k

) = 1.

The first equality follows from the fact that max(x, y) · min(x, y) = x · y. The last
equality can be proved either by expanding the binomial coefficients into factorials,
or by realizing that both

(
d
i

)(
d−i
j−i

)(
j−i
k−i

)
and

(
d
k

)(
k
i

)(
d−k
j−k

)
count the number of ways i

red balls, j − k blue balls, and k − i green balls can be placed into d slots, each of
which can hold at most one ball. This completes the proof of the claim.

This completes the proof of the lemma.
The following lemma gives a handle on the expression capturing the size of a

2-TC-spanner.
Lemma 5.3. Let s = maxi,j:i<j mink:i≤k≤j

(dk)
(j−i
k−i)

max
{(

k
i

)
,
(
d−k
d−j

)}
. Then s = 2cd,

where c ≈ 1.1620.
Proof. We use the fact that

(
n
cn

)
= 2(Hb(c)−on(1))n, where “on(1)” is a function of

n that tends to zero as n tends to infinity, and Hb(p) = −p log p− (1 − p) log(1 − p)
is the binary entropy function. Substituting i = αd, j = βd, and k = γd into the
resulting expression for s, and taking the logarithm of both sides, we get

log2 s = max
0≤α<β≤1

min
α≤γ≤β

[
Hb(γ)−Hb

(γ − α

β − α

)
(β − α)

+ max

(
Hb

(α
γ

)
γ,Hb

(
1− β

1− γ

)
(1− γ)

)]
d.

In other words, log2 s = cd, where c is a constant. We can check numerically that
c ≈ 1.1620.

Remark 5.1. We note that if the first maximum in the expression for s in
Lemma 5.3 is replaced with the sum, then Lemma 5.1 holds for O(d · s) instead
of O(d3 · s), while Lemma 5.2 holds for Ω(sd) instead of Ω(s). The proofs of these
modified statements are similar. (We do not have an analogue of Lemma 5.3 for the
modified expression for s.) Observe that the modified bounds differ by a factor of
O(d2) instead of O(d3). This demonstrates that our randomized construction yields
a 2-TC-spanner of Hd of size within O(d2) of the optimal.

6. 2-TC-spanners of high-dimensional hypergrids. In this section, we gen-
eralize the arguments for the hypercube from section 5 to the directed hypergrid, Hd

m,
to find the size of the sparsest 2-TC-spanner of Hd

m to within poly(d) factors. This
result supersedes the results of section 4 when, for instance, m is constant and d
is growing. The expression we obtain can be evaluated numerically for small m us-
ing standard approximations of binomial coefficients. For example, this was done in
Lemma 5.3 for the case m = 2.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

642 BHATTACHARYYA ET AL.

Before stating Theorem 6.2, we introduce some notation.
Definition 6.1. For the hypergrid Hd

m, define a level to be a set of vertices,
indexed by vector i ∈ [d]m with i1 + · · · + im = d, that consists of vertices x =
(x1, . . . , xd) ∈ [m]d containing i1 positions of value 1, i2 positions of value 2, . . . , and
im positions of value m.

Notice that the number of vertices in level i = (i1, i2, . . . , im) is the multinomial
coefficient

(
d

i

)
=

(
d

i1, . . . , id

)
=

(
d

i1

)(
d− i1
i2

)(
d− i1 − i2

i3

)
. . .

(
d−∑m−1

l=1 il
im

)
.

Indeed, there are
(
d
i1

)
choices for the coordinates of value 1. For each such choice

there are
(
d−i1
i2

)
choices for the coordinates of value 2, and repeating this argument,

one obtains the above expression.
For levels i, j ∈ [d]m, say j majorizes i, denoted j � i, if level j contains a vertex

which is above some vertex in level i, i.e., if

m∑
�=t

j� ≥
m∑
�=t

i� ∀t ∈ {m,m− 1, . . . , 1}.

For j � i, the number of vertices y in level i comparable to a fixed vertex x in
level j is M(i, j):

(
jm
im

)(
jm + jm−1 − im

im−1

)(
jm + jm−1 + jm−2 − im − im−1

im−2

)
. . .

(∑m
l=1 jl −

∑m
l=2 il

i1

)
.

Indeed, there are
(
jm
im

)
choices for the coordinates of value m in y. For each such

choice, there are
(
jm+jm−1−im

im−1

)
choices for the coordinates of value m − 1 in y, and

one can repeat this argument to obtain the claimed expression.
For j � i, the number of vertices y in level j comparable to a fixed vertex x in

level i is

N (i, j) =
M(i, j)

(
d
j

)
(
d
i

) .

Indeed, there are M(i, j)
(
d
j

)
comparable pairs of vertices in levels i and j, and level i

contains
(
d
i

)
vertices. Since, by symmetry, each vertex in level i is comparable to the

same number of vertices in level j, we get the desired expression.
Theorem 6.2. Let

B(m, d) = max
i,j:j�i

min
k:i≺k≺j

M(i, j)
(
d
j

)
M(i,k)N (k, j)

max {M(i,k),N (k, j)} .

Then the number of edges in the sparsest 2-TC-spanner of the directed hypergrid Hd
m

is O(d2mB(m, d)) and Ω (B(m, d)).
The bounds stated in Theorem 6.2 are presented separately as Lemma 6.3 (the

upper bound) and Lemma 6.4 (the lower bound) below.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 643

6.1. Upper bound.
Lemma 6.3. There is a 2-TC-spanner of Hd

m with O
(
d2mB(m, d)

)
edges, where

B(m, d) is defined as in Theorem 6.2.
Proof. Let v ∈ i denote that vertex v belongs to level i. Consider the following

probabilistic construction that connects comparable vertices in levels i and j of Hd
m

by paths of length at most 2.

Given levels i, j ∈ [d]m, j � i,
1. Initialize the set Ei,j to ∅.
2. Let ki,j = argmin

k:i≺k≺j

(
M(i,j)(dj)

M(i,k)N (k,j) max {M(i,k),N (k, j)}
)
.

3. Let Si,j be a set of dm
M(i,j)(dj)

M(i,k)N (k,j) vertices chosen uniformly at

random from the
(
d
k

)
vertices in level k = ki,j.

4. For each vertex v ∈ Si,j, set Ei,j to

Ei,j ∪ {(x, v) : x ∈ i ∧ x ≺ v} ∪ {(v, y) : y ∈ j ∧ v ≺ y}.

That is, connect v to all comparable vertices in levels i and j.
5. Output Ei,j.

Claim 6.1. For all i ≺ j, with probability at least 1
2 , the edge set Ei,j contains a

path of length at most 2 between every pair of vertices (x, y) such that x ≺ y, x ∈ i,
and y ∈ j.

Proof. Fix a pair of vertices (x, y) with x ≺ y, such that x ∈ i and y ∈ j. We will

first show that Prv∈k[x ≺ v ≺ y] ≥ p, where p = M(i,k)N (k,j)

M(i,j)(dj)
.

Toward that end, notice that there are M(i, j)
(
d
j

)
pairs of comparable vertices

(u,w) with u ∈ i and w ∈ j. Each vertex in Si,j connects exactly M(i,k)N (k, j) pairs
of nodes from levels i and j. It is enough to show that for any such pair (u,w) the
number of vertices in level k that are comparable to both u and v is independent of
u,w; i.e., that number depends only on the levels i,k, j, and thus is the same for all
such pairs. To see that, for a vertex u ∈ z, denote by Tl(u) the set of positions of value
l in u. Notice that |Tl(u)| = zl. For x ≺ v ≺ y, it holds that Tm(x) ⊆ Tm(v) ⊆ Tm(y).
Hence, there are

(
jm−im
km−im

)
choices for the m-values in the vector v. Similarly, we must

have Tm−1(x) ⊆ Tm−1(v) ⊆ Tm(y) ∪ Tm−1(y). Hence, there are
(
jm+jm−1−km−im−1

km−1−im−1

)
choices for the values m− 1 in v. Repeating this process, we obtain that the number
of possible v’s does not depend on the particular choice of x and y.

Thus, the probability that Si,j does not contain such a vertex v with x ≺ v ≺ y
is (1 − p)d

m/p ≤ e−dm

.
The number of comparable pairs (x, y) is at most m2d, and by a union bound,

the probability that there exists (x, y) such that there is no v ∈ Si,j with x ≺ v ≺ y
is at most m2de−dm

< 1/2.
By Claim 6.1, for every i and j there exists a set Si,j such that comparable pairs

from the levels i and j are connected by a path of length at most 2 via a vertex in
Si,j. Let E∗

i,j be the set of edges returned by the algorithm when this Si,j is chosen.

We set E =
⋃

j�i E
∗
i,j. Then the graph ([m]d, E) is a 2-TC-spanner of Hd

m.
Now, we show that the size of E is as claimed in the lemma statement. The main

observation is that in step 4, for every v ∈ Si,j, the set

{(x, v) : x ∈ i ∧ x ≺ v} ∪ {(v, y) : y ∈ j ∧ v ≺ y}

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

644 BHATTACHARYYA ET AL.

has size M(i,k) +N (k, j).
The claimed bound follows since |E| =∑j�i |E∗

i,j|, where the sum has dm terms.

6.2. Lower bound.
Lemma 6.4. Every 2-TC-spanner of Hd

m has Ω(B(m, d)) edges, where B(m, d) is
defined as in Theorem 6.2.

Proof. Let H be a 2-TC-spanner of Hd
m. We count the edges in H that occur on

paths connecting two particular levels of Hd
m. Let Pi,j = {(v1, v2) : v1 ∈ i, v2 ∈ j, v1 ≺

v2}. We will lower bound e∗i,j, the number of edges in the paths of length at most 2

in H that connect the pairs Pi,j. Notice that |Pi,j| =
(
d
j

)M(i, j).
Let ek,� denote the number of edges in H that connect vertices in level k to

vertices in level �. Then

(6.1) e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j).

We say that a vertex v covers a pair of vertices (v1, v2) if H contains the edges

(v1, v) and (v, v2) or, for the special case v = v1, if H contains (v1, v2). Let V
(k)
i,j be

the set of vertices in level k that cover pairs in Pi,j. Let αk be the fraction of pairs in

Pi,j that are covered by the vertices in V
(k)
i,j . Since each pair in Pi,j must be covered

by a vertex in levels k with i ≺ k ≺ j, we have∑
i≺k≺j

αk ≥ 1.

For any vertex v ∈ V
(k)
i,j , let inv be the number of incoming edges from vertices of

level i incident to v, and let outv be the number of outgoing edges to vertices of level

j incident to v. For each level k with i ≺ k ≺ j, since each vertex v ∈ V
(k)
i,j covers

inv · outv pairs,

(6.2)
∑

v∈V
(k)
i,j

inv · outv ≥ αk|Pi,j| ≥ αkM(i, j)

(
d

j

)
.

We upper bound
∑

v∈V
(k)
i,j

inv · outv as a function of ei,k + ek,j and then use (6.2)

to lower bound ei,k + ek,j. For all k with i ≺ k ≺ j, variables inv and outv satisfy the
following constraints:∑

v∈V
(k)
i,j

inv ≤ ei,k ≤ ei,k + ek,j,
∑

v∈V
(k)
i,j

outv ≤ ek,j ≤ ei,k + ek,j,

inv ≤ M(i,k) ∀v ∈ V
(k)
i,j , outv ≤ N (k, j) ∀v ∈ V

(k)
i,j .

The last two constraints hold because inv and outv count the number of edges to a
vertex of level k from vertices of level i, and from a vertex of level k to vertices of
level j, respectively. These bounds imply that∑
v∈V

(k)
i,j

inv · outv ≤
∑

v∈V
(k)
i,j

M(i,k) · outv = M(i,k) ·
∑

v∈V
(k)
i,j

outv ≤ M(i,k) · (ei,k+ ek,j).

Similarly,
∑

v∈V
(k)
i,j

inv · outv ≤ N (k, j) · (ei,k + ek,j). Therefore,∑
v∈V

(k)
i,j

inv · outv ≤ (ei,k + ek,j)min {M(i,k),N (k, j)} .D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCAL MONOTONICITY RECONSTRUCTION AND TC SPANNERS 645

Then (6.2) implies that

ei,k + ek,j ≥ αkM(i, j)

(
d

j

)
1

min {M(i,k),N (k, j)} ∀i ≺ k ≺ j.

Applying (6.1) and the fact that
∑

i≺k≺j αk ≥ 1, we get

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j) ≥
∑
k

αk
1

min {M(i,k),N (k, j)}M(i, j)

(
d

j

)

≥ min
k

1

min {M(i,k),N (k, j)}M(i, j)

(
d

j

)

= min
k

1

M(i,k)N (k, j)
M(i, j)

(
d

j

)
max {M(i,k),N (k, j)}.

Since this holds for arbitrary i and j, the size of the 2-TC-spanner H is at least
B(m, d).

REFERENCES

[1] N. Ailon, B. Chazelle, S. Comandur, and D. Liu, Property-preserving data reconstruction,
Algorithmica, 51 (2008), pp. 160–182.

[2] N. Alon and B. Schieber, Optimal Preprocessing for Answering On-line Product Queries,
Technical Report 71/87, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv,
Israel, 1987.

[3] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, Dynamic and efficient key
management for access hierarchies, ACM Trans. Inf. Syst. Secur., 12 (2009), 18.

[4] B. Awerbuch, Communication-time trade-offs in network synchronization, in Proceedings of
the Fourth Annual ACM Symposium on Principles of Distributed Computing (PODC’85),
M. Malcolm and R. Strong, eds., ACM, New York, 1985, pp. 272–276.

[5] S. Baswana and S. Sen, Approximate distance oracles for unweighted graphs in expected Õ(n2)
time, ACM Trans. Algorithms, 2 (2006), pp. 557–577.

[6] A. Bhattacharyya, E. Grigorescu, M. Jha, K. Jung, S. Raskhodnikova, and D. P.

Woodruff, Lower bounds for local monotonicity reconstruction from transitive-closure
spanners, in Proceedings of RANDOM 2010, M. J. Serna, R. Shaltiel, K. Jansen, and J.
D. P. Rolim, eds., Lecture Notes in Comput. Sci. 6302, Springer, New York, 2010, pp. 448–
461.

[7] A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova, and D. P. Woodruff,
Transitive-closure spanners, in Proceedings of the Twentieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, C. Mathieu, ed., SIAM, Philadelphia, 2009, pp. 932–941.

[8] H. L. Bodlaender, G. Tel, and N. Santoro, Trade-offs in non-reversing diameter, Nordic
J. Comput., 1 (1994), pp. 111–134.

[9] A. K. Chandra, S. Fortune, and R. J. Lipton, Lower bounds for constant depth circuits for
prefix problems, in Proceedings of ICALP, Josep Dı́az, ed., Lecture Notes in Comput. Sci.
154, Springer, New York, 1983, pp. 109–117.

[10] A. K. Chandra, S. Fortune, and R. J. Lipton, Unbounded fan-in circuits and associative
functions, J. Comput. System Sci., 30 (1985), pp. 222–234.

[11] B. Chazelle, Computing on a free tree via complexity-preserving mappings, Algorithmica, 2
(1987), pp. 337–361.

[12] E. Cohen, Fast algorithms for constructing t-spanners and paths with stretch t, SIAM J.
Comput., 28 (1998), pp. 210–236.

[13] E. Cohen, Polylog-time and near-linear work approximation scheme for undirected shortest
paths, J. ACM, 47 (2000), pp. 132–166.

[14] L. Cowen, Compact routing with minimum stretch, J. Algorithms, 38 (2001), pp. 170–183.
[15] L. Cowen and C. G. Wagner, Compact roundtrip routing in directed networks, J. Algorithms,

50 (2004), pp. 79–95.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

646 BHATTACHARYYA ET AL.

[16] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky,
Improved testing algorithms for monotonicity, in Proceedings of RANDOM 1999, D. S.
Hochbaum, K. Jansen, J. D. P. Rolim, and A. Sinclair, eds., Lecture Notes in Comput. Sci.
1671, Springer, New York, 1999, pp. 97–108.

[17] M. Elkin, Computing almost shortest paths, ACM Trans. Algorithms, 1 (2005), pp. 283–323.
[18] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky, Testing mono-

tonicity, Combinatorica, 20 (2000), pp. 301–337.
[19] W. Hesse, Directed graphs requiring large numbers of shortcuts, in Proceedings of the Four-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, SIAM,
Philadelphia, 2003, pp. 665–669.

[20] G. Narasimhan and M. H. M. Smid, Geometric Spanner Networks, Cambridge University
Press, Cambridge, UK, 2007.

[21] D. Peleg and A. A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[22] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube, SIAM J. Comput.,

18 (1989), pp. 740–747.
[23] D. Peleg and E. Upfal, A trade-off between space and efficiency for routing tables, J. ACM,

36 (1989), pp. 510–530.
[24] S. Raskhodnikova, Transitive-closure spanners: A survey, in Property Testing, O. Goldreich,

ed., Lecture Notes in Comput. Sci. 6390, Springer, Heidelberg, 2010, pp. 167–196.
[25] L. Roditty, M. Thorup, and U. Zwick, Roundtrip spanners and roundtrip routing in directed

graphs, ACM Trans. Algorithms, 4 (2008), 29.
[26] M. Saks and C. Seshadhri, Local monotonicity reconstruction, SIAM J. Comput., 39 (2010),

pp. 2897–2926.
[27] R. Seidel, Understanding the Inverse Ackermann Function, slide series, available online at

http://cgi.di. uoa.gr/∼ewcg06/invited/Seidel.pdf, 2006.
[28] S. Solomon, An optimal-time construction of sparse Euclidean spanners with tiny diameter,

in Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, D. Randall, ed., SIAM, Philadelphia, 2011, pp. 820–839.

[29] M. Thorup, On shortcutting digraphs, in Graph-Theoretic Concepts in Computer Science, Pro-
ceedings of the 18th International Workshop (WG), Wiesbaden-Naurod, Germany, 1992,
Lecture Notes in Comput. Sci. 657, Springer, New York, 1993, pp. 205–211.

[30] M. Thorup, Shortcutting planar digraphs, Combin. Probab. Comput., 4 (1995), pp. 287–315.
[31] M. Thorup, Parallel shortcutting of rooted trees, J. Algorithms, 23 (1997), pp. 139–159.
[32] M. Thorup and U. Zwick, Compact routing schemes, in Proceedings of SPAA ’01, A. Rosen-

berg, ed., ACM, New York, 2001, pp. 1–10.
[33] M. Thorup and U. Zwick, Approximate distance oracles, J. ACM, 52 (2005), pp. 1–24.
[34] A. C. Yao, Space-time tradeoff for answering range queries (extended abstract), in Proceedings

of the Fourteenth Annual ACM Symposium on Theory of Computing, H. R. Lewis, B. B.
Simons, W. A. Burkhard, and L. H. Landweber, eds., ACM, New York, 1982, pp. 128–136.

D
ow

nl
oa

de
d

07
/0

6/
12

 to
 1

43
.2

48
.1

35
.6

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

