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Purpose
Current treatment of glioblastoma after surgery consists of a combination of fractionated radio-
therapy and temozolomide. However, it is difficult to completely remove glioblastoma because it
has uncertain boundaries with surrounding tissues. Moreover, combination therapy is not always
successful because glioblastoma has diverse resistances. To overcome these limitations, we 
examined the combined effects of chemotherapy and knockdown of mitogen-activated protein 
kinase phosphatase-1 (MKP-1).

Materials and Methods
We used ten different anti-cancer drugs (cisplatin, cyclophosphoamide, doxorubicin, epirubicin,
etoposide, 5-fluorouracil, gemcitabine, irinotecan, mitomycin C, and vincristine) to treat glioblas-
toma multiforme (GBM) cells. Knockdown of MKP-1 was performed using siRNA and lipofecta-
mine. The basal level of MKP-1 in GBM was analyzed based on cDNA microarray data obtained
from the Gene Expression Omnibus (GEO) databases.

Results
Anti-cancer drug-induced cell death was significantly enhanced by knockdown of MKP-1, and
this effect was most prominent in cells treated with irinotecan and etoposide. Treatment with
these two drugs led to significantly increased phosphorylation of c-Jun N-terminal kinase (JNK)
in a time-dependent manner, while pharmacological inhibition of JNK partially inhibited drug-
induced cell death. Knockdown of MKP-1 also enhanced drug-induced phosphorylation of JNK.

Conclusion
Increased MKP-1 expression levels could be the cause of the high resistance to conventional
chemotherapeutics in human GBM. Therefore, MKP-1 is an attractive target for overcoming drug
resistance in this highly refractory malignancy.

Key words
Dual specificity phosphatase 1, Glioblastoma, 
JNK mitogen-activated protein kinases, Apoptosis, 
Chemotherpy, Anti-cencer drug resistance
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I n t r o d u c t i o n

Glioblastoma multiforme (GBM) is one of the most common primary
malignant brain tumors in adults [1,2]. Surgical excision combined with
radiotherapy and chemotherapy is the choice of treatment; however, the
overall prognosis remains poor, and the median survival rate of GBM 
patients is less than 18 months [3-5]. Currently, GBM is treated with 
surgical resection with concurrent radiotherapy and daily temozolomide
(TMZ, 75 mg/m2) [6]. TMZ is an oral agent used for the treatment of

GBM and melanoma; however, its therapeutic action depends on its ability
to alkylate/methylate DNA. Because this methylation induces DNA 
damage and triggers the death of tumor cells, overexpression of a DNA
repair enzyme known as O-6-methylguanine-DNA methyltransferase
(MGMT) can diminish the therapeutic efficacy of TMZ. About half of
secondary GBM patients show a higher expression profile of MGMT [7].
Other mechanisms including deregulation of cellular enzymes and 
membrane transporting proteins, genomic aberrations, and altered 
susceptibility to apoptosis may also be responsible for the higher incidence
of chemo-resistance in GBM patients [8].



Mitogen-activated protein kinase phosphatases (MKPs) belong to the
family of dual-specificity protein phosphatases, which dephosphorylate
both tyrosine and serine/threonine residues of mitogen-activated protein
kinases (MAPKs). MKPs are subdivided into three distinct groups based
on gene structure, sequence similarity, substrate specificity, and subcellular
localization [9,10]. MKP-1 is localized to the nucleus, and has a high
specificity to MAPKs including p38 MAPK and c-Jun N-terminal kinase
(JNK), but a relatively low specificity to extracellular signal-regulated 
kinase [11]. MKP-1 is induced by various chemotherapeutics and has
been shown to inhibit drug-induced JNK activation and subsequent 
apoptotic cell death in breast cancers [12,13]. Reduction of MKP-1 
expression levels using small interfering RNA (siRNA) increases chemo-
sensitivity and JNK activity in lung and ovarian cancers [14]. In this study,
we investigated whether highly expressed MKP-1 in human GBM cells
is responsible for the chemo-resistance observed in these cells.

M a t e r i a l s  a n d  M e t h o d s

1. Reagents

Rabbit polyclonal antibodies against JNK, phospho-JNK, caspase-3,
and cleaved caspase-3 were purchased from Cell Signaling Technologies
(Beverly, MA). Cisplatin, cyclophosphoamide, doxorubicin, epirubicin,
etoposide, 5-fluorouracil, gemcitabine, irinotecan, mitomycin C, and 
vincristine were purchased from Sigma-Aldrich (St. Louis, MO). Rabbit
polyclonal anti-human MKP-1 and MKP-2 antibody were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA). JNK inhibitor
(SP600125) was purchased from Calbiochem (La Jolla, CA).

2. Cell culture

Human GBM cell lines (U251-MG and LN215-MG) were maintained
at 37°C under an atmosphere of 5% CO2 and 95% air in Dulbecco’s 

modified Eagle’s medium (Welgene, Seoul, Korea) supplemented with
10% fetal bovine serum (Gibco, Gaithersburg, MD), 100 U/mL penicillin,
100 g/mL streptomycin, and minimum essential medium (MEM)
nonessential amino acids (Invitrogen, Carlsbad, CA). U373-MG and
CRT-MG were maintained at 37°C under an atmosphere of 5% CO2 and
95% air in RPMI 1640 medium (Welgene) supplemented with 10% fetal
bovine serum (Gibco), 100 U/mL penicillin, 100 g/mL streptomycin,
and MEM nonessential amino acids (Invitrogen).

3. Transfection with siRNA for knockdown of MKP-1

siRNA for MKP-1 (5-CUCAGUGUGUGAUCCGGUU-3) and a
random sequence (control, 5-CCUACGCCAAUUUCGU-3) siRNA
were synthesized by Bioneer (Daejeon, Korea) and used for transfection,
which was performed using Lipofectamine 2000 (Invitrogen) according
to the manufacturer’s protocols. For transient transfection, cells were
plated at 5104 cells per well in six-well plates or 6105 cells per well in
60 mm dishes. The next day, cells were transfected with MKP-1 siRNA
oligonucleotides or control siRNA using Lipofectamine 2000 (Invitrogen).
After 48 hours of transfection, cells were treated in the presence or absence
of various anti-cancer drugs. Transfection efficiency was then assessed
using both quantitative real-time polymerase chain reaction (qRT-PCR)
and western blotting of MKP-1.

4. Total RNA isolation and qRT-PCR analysis

Total RNA was isolated using an RNeasy Mini Kit (Qiagen, Hilden,
Germany). Complementary DNA (cDNA) synthesis was performed with
the SuperScript First-Strand Synthesis System (Invitrogen) according to
the manufacturer’s instructions, and qRT-PCR was performed using a
LightCycler FastStart DNA Kit (Roche Applied Science, Mannheim, 
Germany) with the LightCycler 2.0 System. The MKP-1 primer 
sequences were 5-CCTGTCCACTCCACGAACAGT-3 for the forward
primer and 5-GCTGGGAGAGGTCGTAATGG-3 for the reverse
primer. 

5. Cell viability assay

Cell viability was determined using WST-1 reagent (Nalgene,
Rochester, NY) with a microplate reader (Bio-Rad, Richmond, CA) to
measure the absorbance at 450 nm. Cell death was confirmed by staining
with 100 nmol/L tetramethylrhodamine ethyl ester (Sigma, Taufkirchen,
Germany). A total of 10,000 cells were analyzed using an LSRII flow 
cytometer (BD Bioscience, San Jose, CA).

6. Western blot analysis

Cell lysates were electrophoresed through 10% or 15% polyacrylamide
gels and then transferred to polyvinylidene difluoride membranes (Milli-
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Table 1. The concentrations of anti-cancer drugs used in this study

Drug Concentration

Doxorubicin (mg/L) 0.5
Epirubicin (mg/L) 0.5
Mitomycin C (mg/L) 3
Cisplatin (mg/L) 3
Irinotecan (mg/L) 10
Etoposide (µmol/L) 5
5-fluorouracil (mmol/L) 0.5
Gemcitabine (µmol/L) 0.5
Cyclophosphamide (g/L) 0.5
Vincristine (mg/L) 3
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Fig. 1. MAP kinase phosphatase-1 (MKP-1) is highly expressed in human glioblastomas. (A) The expression of MKP-1 was evaluated using the
microarray data of brain cancer patients provided by the Gene Expression Omnibus (GEO) database (GSE ID GSE2223). The results are presented
as the means±SEM, and Tukey’s post-hoc test was applied to significant group effects in ANOVA, ***p＜0.001. (B) The expression of MKP-1
was measured by western blot analysis in human primary astrocytes, human glioblastomas (U251MG, LN215 and U373MG), human astroglioma
(CRT-MG), human hepatomas (HepG2, Huh7), and human cervical adenocarcinoma (HeLa) cell lines. (C) The expression of MKP-2 was measured
by western blot analysis in the same cell lines as in (B). GAPDH, glyceraldehyde 3-phosphate dehydrogenase; hPA, human primary culturesd 
astrocytes.

pore, Bedford, MA). The membranes were subsequently probed with the
antibodies listed above, after which bound antibody was detected using
the ECLplus Reagent (Amersham Pharmacia Biotech, Little Chalfont,
UK) according to the manufacturer’s protocols.

7. Microarray data-set

A microarray dataset was obtained from Gene Expression Omnibus
(GEO) Series (GSE), and GSE ID GSE2223; probes 5382, 40027, and
40883 were used for MKP-1. Because the probe intensities were recorded
on a log2 scale, the intensities were converted to a log10 scale [2^(probe
intensity recorded in the dataset)], and averaged to give the final MKP-1
expression level.

8. Statistical analysis

All data are presented as the means±SEM. Statistical analyses of two
independent samples were performed using a Student’s t-test. Groups
were compared by one-way ANOVA with Tukey’s post-hoc test, which
determines the significance of differences between means. A p < 0.05 was
considered to be significant. 

R e s u l t s

1. MKP-1 is highly expressed in human GBM tumors and GBM cell
lines

Analysis of the cDNA microarray data provided by the GEO databases
(GSE ID GSE2223) revealed that the MKP-1 mRNA expression levels
were higher in brain tumor samples than normal samples, and that the
amount of the increase was correlated with the grade of the tumor. 
Specifically, MKP-1 levels were only higher in GBM samples (grade IV)
when compared to normal brain samples (Fig. 1A). We tested whether
MKP-1 was also highly expressed in human GBM cell lines using 
immunoblot analysis (Fig. 1B). When compared to other cell types and
human primary cultured astrocytes, MKP-1 was highly expressed in
human GBM cell lines in the absence of any external stimulation. Because
MKP-2 has a similar intracellular localization and substrate specificity as
MKP-1, we examined the MKP-2 protein levels in the same cell type. 
Interestingly, there were no differences in the expression levels of 
MKP-2 between various tumor cell types. However, in two of the cell
lines (CRT-MG and HepG2), MKP-2 was expressed at relatively higher
levels than in the other cell types (Fig. 1C).

2. Downregulation of MKP-1 sensitizes GBM cells to cytotoxicity 
induced by chemotherapeutic agents

Induced expression of MKP-1 has been identified as one of the cancer
resistance mechanisms in human breast, lung, and ovarian cancers. There-
fore, we tested whether highly expressed MKP-1 plays a role in the high
incidence of chemo-resistance in GBMs. To accomplish this, cells were
transiently transfected with control or MKP-1-specific siRNA and then
tested for drug-induced cytotoxicity. The knockdown efficiency of MKP-1
siRNA was confirmed by qRT-PCR and western blot analysis (Fig. 2A
and B). The reduction of MKP-1 expression significantly enhanced 
drug-induced cytotoxicity in U251-MG cells for all of the drugs tested
except doxorubicin, epirubicin, and cisplatin (Fig. 2C). Although the 
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Fig. 3. The effect of MAP kinase phosphatase-1 (MKP-1) knockdown on irinotecan- and etoposide-induced cell death. Cells were transfected
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(B) for an additional 24 hr. Cell viability was evaluated by WST-1 assay. The results are presented as the mean±SEM (n=4). Asterisks indicate a
significant difference as determined by a Student’s t-test, *p < 0.05 and ***p < 0.001.

differences were not statistically significant, there were considerable 
increases in the cytotoxicity of these drugs against cells transfected with
MKP-1 siRNA. Similar results were obtained using LN215 cells; 
however, MKP-1 knockdown did not significantly increase vincristine-
induced cell death (data not shown).

Because the effect of MKP-1 knockdown was most pronounced with
irinotecan- and etoposide-induced cytotoxicity, we further examined the
effect of MKP-1 siRNA transfection on drug-induced cell death under
these conditions. Twenty four hours after transfection with control or
MKP-1 siRNAs, cells were incubated in the presence or absence of 
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varying doses of irinotecan or etoposide (Fig. 3). These results clearly 
indicate that MKP-1 may act as a mechanism of chemo-resistance in
human GBM cells.

3. The JNK pathway is involved in MKP-1-mediated tumor resist-
ance to chemotherapeutic agents

Anti-cancer drugs are thought to kill cancer cells via sustained activation
of the JNK pathway. Thus, we tested whether the JNK pathway is also
involved in MKP-1-mediated resistance to chemotherapeutic agents.
Treatment with irinotecan or etoposide increased the phosphorylation of
JNK, and this increase was dramatically enhanced by transient transfection
with MKP-1 siRNA (Fig. 4A). Cleavage of caspase-3 into active frag-
ments was also induced by treatment with irinotecan or etoposide, while
MKP-1 knockdown markedly increased the cleavage of procaspase-3.
Consistent with these results, the decrease in viability induced by 
concomitant treatment with irinotecan and MKP-1 siRNA was reversed
by pre-incubation with a JNK inhibitor, SP600125 (Fig. 4B and C).

D i s c u s s i o n

We found that MKP-1 is highly expressed in human GBMs and trans-
formed GBM cell lines in the absence of external stimulation. We also
found that high levels of MKP-1 are responsible for drug-resistance in a
JNK-dependent manner. It has been reported that MKP-1 can be induced
by various chemotherapeutic agents and can act as an anti-apoptotic mech-
anism in certain types of human malignancies. In contrast, our results
clearly indicate that MKP-1 is constitutively expressed at relatively high
levels in human GBM cells and confers resistance to a variety of
chemotherapeutic agents in a JNK-dependent manner.

Due to diverse stimulations triggered by the tumor microenvironment,
expression patterns of MKP-1 vary according to tumor types. In human
breast cancer, the expression level of MKP-1 is constitutive in tissue sur-
rounding the tumor and greater in tumor lesions [15]. Low-grade human
colon cancer showed robust MKP-1 expression, but MKP-1 was down
regulated in high-grade tumors [16]. As shown in Fig. 1, MKP-1 expres-
sion is higher in glioblastoma cell lines than in human primary astrocytes.
These results imply that MKP-1 is highly correlated with tumor progres-
sion and contributes to subsequent drug resistance in glioblastoma.

While multiple mechanisms for multi-drug resistance (MDR) have
been proposed, there are only a few considered to be primarily responsible
for MDR in many human malignancies. First, cancer cells decrease the
uptake of water-soluble drugs by downregulating specific transporters.

Second, MDR can arise from mechanisms involving the increased activity
of DNA damage repair enzymes, reduced apoptosis, and changes in the
cell cycle and drug metabolism. Third, the induction of energy-dependent
efflux of hydrophobic drugs can cause MDR via increased diffusion
through the plasma membrane [17]. Unlike previous studies of MDR that
address drug acceptability, we investigated the cell signaling associated
with MDR. Because JNK and p38 MAPK are largely responsible for
drug-induced apoptosis and are effective downstream targets of MKP-1
[14,18,19], we considered MKP-1 as a potential mechanism for MDR.
We observed increased drug sensitivity after MKP-1 knockdown in
human GBM cells, found the effect of this knockdown to be most pro-
nounced in irinotecan- and etoposide-induced cytotoxicity. Irinotecan, in
combination with bevacizumab was tested in a Phase 2 clinical study for
recurrent glioblastoma. Although combination therapy provides impres-
sive response rates, the mechanisms responsible for the clinical benefits
in GBM patients remain unclear [20,21]. Etoposide is also being studied
in a Phase 2 clinical trial and is commonly used in combination with car-
boplatin in recurrent GBM patients [22].

C o n c l u s i o n

These studies implicate MKP-1 as an important mediator of chemo-
resistance. MKP-1 is highly expressed in the glioblastoma in the basal
state, but not in normal brain cells. Overexpressed MKP-1 increases the
resistance to anti-cancer drugs through inhibition of JNK phosphorylation.
Therefore, MKP-1 is an attractive target for overcoming drug resistance
in this highly refractory malignancy.
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