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We study the structural constraint of random scale-free networks that determines possible combinations

of the degree exponent � and the upper cutoff kc in the thermodynamic limit. We employ the framework

of graphicality transitions proposed by Del Genio and co-workers [Phys. Rev. Lett. 107, 178701 (2011)],

while making it more rigorous and applicable to general values of kc. Using the graphicality criterion, we

show that the upper cutoff must be lower than kc � N1=� for � < 2, whereas any upper cutoff is allowed

for � > 2. This result is also numerically verified by both the random and deterministic sampling of

degree sequences.
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Complex networks [1] are found in diverse natural and
artificial systems, which consist of heterogeneous elements
(nodes) coupled by connections (links) markedly different
from those of ordinary lattices. In particular, many systems
[2–6] can be interpreted as scale-free networks, in which
the fraction of nodes with degree k (i.e., k links) obeys the
power-law distribution PðkÞ � k�� over a broad range of
values bounded by km � k � kc where � is called the
degree exponent, km is the lower cutoff, and kc is the upper
cutoff. There have been interests in topological and dy-
namical properties induced by the degree distribution,
which have been examined through various studies on
random scale-free networks [7–13].

Random scale-free networks refer to an ensemble of
networks constrained only by the parameters �, km, and
kc. In general, km is set as a constant, while kc is assumed
to increase with the number of nodes N as kc � N� with
0 � � � 1. Besides, self-loops or multiple links between a
pair of nodes are often disallowed. Under the circumstan-
ces, the degree exponent � and the cutoff exponent �
determine various properties of networks in the thermody-
namic limit, N ! 1. It is known that � contributes to the
resilience against node failures [7], the epidemic threshold
[8], the consensus time of opinion dynamics [9], etc.
Meanwhile, � affects the expected value of the generated
maximum degree [10], degree correlations [11], finite-size
scaling at criticality [12,13], etc.

The studies of random scale-free networks characterized
by � and � must be based on the knowledge that such
networks actually exist in the thermodynamic limit. Hence,
it is necessary to understand the constraint on the possible
values of � and�. This problem is exactly equivalent to the
issue of the graphicality of random scale-free networks. A
degree sequence fk1; k2; . . . ; kNg is said to be graphical if it
can be realized as a network without self-loops or multiple

links. As an indicator of the existence of graphical sequen-
ces, the graphicality fraction g [14] is defined as the
fraction of graphical sequences among the sequences
with an even degree sum generated by PðkÞ. Note that
the degree sequences with an odd degree sum are left
out, since such sequences are trivially nongraphical. The
constraint on the possible values of � and � can be
obtained from the behavior of g due to the fact that the
random scale-free networks with given � and � exist in the
thermodynamic limit if and only if g is nonzero as N ! 1.
Using the graphicality criterion given by the Erdős-

Gallai (EG) theorem [15], Del Genio and co-workers
[14] have recently studied the behavior of g as a function
of � only for the special case of kc ¼ N � 1 and km ¼ 1.
They found

g ¼
(
0 if 0 � � � 2

1 otherwise;

where the abrupt changes of g at � ¼ 0 and � ¼ 2 were
termed graphicality transitions [14]. This result implies
that there exist only sparse random scale-free networks
with a finite average degree (� > 2) and left-skewed net-
works with an abundance of hubs (� < 0) in the thermo-
dynamic limit when the range of degree is kept maximal.
In this Letter, we generalize their study to arbitrary

choices of degree cutoffs, so that we can provide the
complete picture of the constraint on the possible values
of � and �. Starting from the EG theorem, we present a
rigorous derivation of g as a function of both � and �,
which is then verified and supplemented by numerical
results.
The EG theorem [15] states that a degree sequence

sorted in the decreasing order k1 � k2 � . . . � kN is
graphical if it has an even sum and satisfies the EG inequal-
ities given by
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Xn
i¼1

ki � nðn� 1Þ þ XN
i¼nþ1

min½n; ki� (1)

for any integer n in the range 1 � n � N � 1.
To determine whether those inequalities are satisfied in

the thermodynamic limit, we derive the network-size scal-
ings of the left-hand side (lhs) and the right-hand side (rhs)
of each inequality. As the first step, we calculate the scaling
of kn from the cumulative mass function of kn, which is

denoted by �ðnÞ
N . The maximum degree (n ¼ 1) satisfies

�ð1Þ
N ðkÞ ¼YN

i¼1

Prob½ki � k� ¼ ½CðkÞ�N; (2)

where C is the cumulative mass function of degree. Since

�ðnÞ
N satisfies the recursive relation

�ðnÞ
N ðkÞ � �ðn�1Þ

N ðkÞ ¼ Prob½kn�1 > k and kn � k�

¼ N
n� 1

� �
½1� CðkÞ�n�1½CðkÞ�N�nþ1;

(3)

we can obtain its exact form as

�ðnÞ
N ðkÞ ¼ Xn�1

i¼0

N

i

 !
½1� CðkÞ�i½CðkÞ�N�i: (4)

Suppose n ¼ �N�, where � > 0 and 0 � � � 1. If �> 0,
we can use the following approximation for large N:

�ðnÞ
N ðkÞ �

erf

�
N½CðkÞþ�N��1�1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NCðkÞ½1�CðkÞ�
p

�
þ 1

2
: (5)

Using Eq. (4) for � ¼ 0 and Eq. (5) for �> 0, we can find

the range of k in which �ðnÞ
N ðkÞ increases from 0 to 1 in the

limit N ! 1. Since the typical values of kn must fall
within this range of k, we can obtain the network-size
scalings of kn as listed in Table I.
While both sides of the EG inequalities are sums over kn,

we can approximate those sums as integrals, since it does
not affect the the leading N-dependent term that deter-
mines the scaling relation. It is straightforward to approxi-
mate the lhs, while the rhs needs a careful reformulation.
The second term of the rhs satisfies

XN
i¼nþ1

min½n; ki� ¼ N�ðn� kmÞ
Xmin½n;knþ1�

k¼km

kPðkÞ

þ N�ðknþ1 � n� 1Þ Xknþ1

max½nþ1;km�
nPðkÞ;

(6)

where � denotes the Heaviside step function defined by
�ðxÞ ¼ 1 if x � 0, and �ðxÞ ¼ 0 otherwise. From now on,
each summation can be converted to an integral over the
same range. Calculating all the integrals, we can single out
the leading N-dependent terms of each side, as listed in
Table II. The scalings of those terms are completely de-
termined by the three exponents �, �, and �, while the
lower cutoff km turns out to be irrelevant.
We can now determine whether the EG inequalities are

satisfied through the comparison of scaling exponents in
both sides. By the EG theorem, g ¼ 1 if the inequalities are
satisfied for all possible values of �, and g ¼ 0 if there
exist the values of � at which some inequalities are vio-
lated. Hence, the asymptotic behavior of g is obtained as
follows:

TABLE II. Scalings with N of each side of the nth EG inequality for arbitrary values of �, �,
and �.

� ¼ 0 0<�< 1 � ¼ 1

� < 1 N� N�þ� N�þ1

� ¼ 1 N� N�þ� N�þ1

lnN

lhs 1< �< 2 N� Nmin½�þ�;1þ�ð2��Þ� N1þ�ð2��Þ
� ¼ 2 N� min½N�þ�;N lnN� N lnN

�> 2 Nmin½�;1=��1� Nmin½�þ�;1�ð��2=��1Þð1��Þ� N

�< 1 N maxfN2�;N1þmin½�;��g N2

� ¼ 1 N maxfN2�;min½N1þ�

lnN ;N1þ��g N2

rhs 1< �< 2 N maxfN2�;N1þmin½�;��ð2��Þg N2

� ¼ 2 N max½N lnN;N2�� N2

� > 2 N max½N;N2�� N2

TABLE I. Scalings with N of the nth largest degree kn for
arbitrary values of �, �, and �.

� ¼ 0 0<�< 1 � ¼ 1

� < 1 N� N� N�

� ¼ 1 N� N� k�mN
�ð1��Þ

� > 1 Nmin½�;1=��1� Nmin½�;1��=��1� N0
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g ¼
(
0 if 1=� < �< 2

1 if � > 2 or �<min½1=�; 1�: (7)

We note that the behavior of g for the special case of
� ¼ 1 and � < 1 cannot be determined by our scaling
argument, since both sides of the EG inequalities satisfy
the same network-size scalings. To address this problem
analytically, it is necessary that we consider the coeffi-
cients of the leading N-dependent terms, which is beyond
the scope of this Letter. Instead, we settle for its numerical
resolution at the end of this Letter.

For the other cases, we can analytically determine the
locations of graphicality transitions from Eq. (7). There
exist two transition points for each value of � in the range
1=2<�< 1, namely the upper transition point ��

U ¼ 2
and the lower transition point ��

L ¼ 1=�. On the other
hand, no transition occurs for 0 � � � 1=2 where g ¼ 1
always holds.

All the predictions on the asymptotic behavior of g can
be numerically checked by the evaluation of the EG in-
equalities. First of all, we can verify all the scalings listed

in Table II, some of which are shown in Fig. 1. This
indirectly supports our predictions on the behavior of g,
as all the predictions were deduced from those scalings.
To obtain direct support for our predictions, we need to

measure the � dependence of g from the random samples
of degree sequences, as illustrated in Fig. 2. Due to sample-
to-sample fluctuations at finite system size, g changes
continuously between 0 and 1 over a finite range of �,
which becomes narrower as N increases. In fact, gmay not
even reach 0 if N is too small, as exemplified by the curves
for � ¼ 0:825 in Fig. 2(a). The curves in Fig. 2(b) show
that the minimum of g gradually reaches zero as N in-
creases. Keeping those observations in mind, for the sake
of convenience, we regard the range of � in which g falls
below 0.99 as the effectively nongraphical region. Then,
the boundary of this region can be chosen as the effective
transition points at finite N, which are again marked as ��

L

and ��
U in Fig. 2(a).

We also consider deterministically generated degree se-
quences defined by 1� CðknÞ ¼ �, obtained from Eq. (5),
which ensures that the sequences exactly follow the
network-size scalings of kn for n ¼ �N. Those sequences
filter out the sample-to-sample fluctuations, making it very
straightforward to locate the effective transition points [see
the inset Fig. 3(a)]. They also greatly improve the efficiency
of calculation, allowing us to check our predictions at larger
N. We observe that the transition points estimated by both
randomly and deterministically generated degree sequen-
ces approach each other asN ! 1 (for example, see Fig. 4).
Therefore, we can use either of those two different sam-
plings to numerically check our predictions.
In Fig. 3, we present graphicality diagrams obtained at

two different values of the cutoff coefficient c, where the
transition lines at finite network sizes are estimated by the
deterministic samplings of degree sequences, and also
compared with the transition lines in the thermodynamic
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FIG. 1 (color online). N dependence of the nth EG inequality
obtained from 103 random degree sequences (symbols) for � ¼
1:5 and � ¼ 0:9. It is in good agreement with the scalings (lines)
predicted in Table II, which is also confirmed by the insets. The
ratio between the successive slopes of each symbol and the slope
of the corresponding line stays close to one.
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FIG. 2 (color online). � dependence of the graphicality frac-
tion g obtained from 103 random degree sequences. (a) �
increases by steps of 0.05 with N ¼ 24 � 103. ��

L, and ��
U

indicate the two transition points at � ¼ 0:825, whose N depen-
dence is shown in (b) as N increases by factors of 2.
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limit predicted by the scaling argument. The numerically
estimated transition lines tend to approach the analytically
predicted ones, which are independent of c. Combining
this observation with the verification of the scaling rela-
tions listed in Table II, we can safely conclude that the
numerical results are slowly converging to our predictions
as N increases.

Moreover, Fig. 3 gives us some clues as to the location of
the graphicality transition for � ¼ 1 and � < 1, which
could not be determined by the scaling argument as pre-
viously explained. The estimated transition lines suggest
that the location of the transition is dependent on c: ��

L

approaches � ¼ 0 at c ¼ 1, as previously reported [14],
but it converges to some different limiting value if c � 1.
The effect of c on the graphicality at � ¼ 1 is more closely
examined in Fig. 4(a), which suggests that ��

L varies con-

tinuously between 0 and 1 with c, while ��
U converges to 2,

regardless of c. This nicely contrasts with Fig. 4(b), which
confirms our prediction that the transition points are inde-
pendent of c for �< 1.

While we have given an almost complete picture of the
graphicality issue of scale-free networks, the nature of
graphicality transitions requires further studies. Note that

at a transition point, the comparison of scalings fails to
determine whether the Erdős-Gallai inequality holds in the
asymptotic limit, just like the case of � ¼ 1. In such cases,
the coefficients of the leading-order terms as well as the
second- and higher-order terms must be considered to
determine the value of g. Thus, we cannot claim yet that
graphicality transitions are truly discontinuous as previ-
ously claimed [14], since they might be sharp but continu-
ous transitions resembling the continuous change of ��

L

with c at � ¼ 1. The claim should be either proven or
disproven by a more complete understanding of the behav-
ior of g at the transition points.
In conclusion, we have found that in the thermodynamic

limit random scale-free networks without self-loops or
multiple links are either sparse (� > 2) with arbitrary
values of degree cutoffs, or dense (0< �< 2) with the
upper cutoff kc � N� satisfying �< 1=�, supplementing
the statement that ‘‘all (random) scale free networks (with
maximal range of degree) are sparse.’’ [14] This also
agrees with the upper cutoff found by Seyed-allaei et al.
[16], which is required for scale-free networks with � < 2
generated using a node-fitness mechanism [17]. We also
numerically found that the cutoff coefficient c affects the
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FIG. 3 (color online). Graphicality diagram in the (�, �) plane
at (a) c ¼ 1 and (b) c ¼ 0:6. The nongraphical region is in gray,
while the other lines are the transition lines estimated using
deterministic degree sequences, whose behavior of g is as
illustrated for � ¼ 0:95 in the inset of (a).
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FIG. 4 (color online). N dependence of the transition points as
c increases by steps of 0.2 for (a) kc ¼ cðN � 1Þ and
(b) kc ¼ cN0:95. Symbols indicate the transition points obtained
from up to 103 random degree sequences, while those obtained
from deterministic sequences are connected with lines.
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realizability of degree sequences for the special case of the
linear cutoff � ¼ 1, which has been overlooked. Our re-
sults impose a limit on the values of � and � for which the
properties of random scale-free networks numerically ob-
tained in finite systems can be extrapolated to the thermo-
dynamic limit.
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