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Abstract

Recent studies have shown that blood oxygen level-dependent low-frequency (< 0.1 Hz) fluctuations (LFFs) dur-
ing a resting-state exhibit a high degree of correlation with other regions that share cognitive function. Initial stud-
ies of resting-state network mapping have focused primarily on major networks such as the default mode
network, primary motor, somatosensory, visual, and auditory networks. However, more specific or subnetworks,
including those associated with specific motor functions, have yet to be properly addressed. We performed inde-
pendent component analysis (ICA) in a specific target region of the brain, a process we name, ‘‘localized ICA.’’
We demonstrated that when ICA is applied to localized fMRI data, it can be used to distinguish resting-state
LFFs associated with specific motor functions (e.g., finger tapping, foot movement, or bilateral lip pulsing) in
the primary motor cortex. These ICA components generated from localized data can then be used as functional
regions of interest to map whole-brain connectivity. In addition, this method can be used to visualize inter-
regional connectivity by expanding the localized region and identifying components that show connectivity
between the two regions.
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Introduction

The basis of functional organization in the brain revolves
around the principle that each function is performed

principally in a small set of specialized brain regions, which
may be localized to one region or be widely distributed across
the brain (Phillips et al., 1984). Traditional approaches using
functional magnetic resonance imaging (fMRI) to map func-
tional connectivity have examined changes in blood oxygen
level-dependent (BOLD) signals in response to a task or stim-
ulus. Thus, functional connectivity of the brain can be per-
formed by identifying, which regions of the brain show an
increase in BOLD signal during an experimental task (Lotze
et al., 2000; Ogawa et al., 1990). However, recent studies
have shown that functional connectivity can be mapped
from the correlation of spontaneous BOLD activity at rest
(Biswal et al., 1995; Cordes et al., 2000; De Luca et al., 2005;
Xiong et al., 1999). These resting-state studies have revealed
that low-frequency (< 0.1 Hz) fluctuations (LFFs) in BOLD
signal exhibit a high degree of correlation among brain re-
gions, which process shared cognitive functions, and are a re-

sult of neuronal activity rather than random noise (Fox and
Raichle, 2007; Lowe et al., 2000; Raichle et al., 2001).

Initial studies in resting-state network mapping have fo-
cused primarily on major networks such as the default
mode network, primary motor, somatosensory, language, vi-
sual, auditory, episodic memory, and dorsal and ventral at-
tention networks (Beckmann et al., 2005; Chen et al., 2008;
Damoiseaux et al., 2006; Smith et al., 2009; van de Ven et al.,
2004). These networks can be mapped using independent com-
ponent analysis (ICA) or region of interest (ROI) analysis. ICA
uses sophisticated algorithms to analyze datasets and deter-
mine maximally statistically independent components (Beck-
mann and Smith, 2004; McKeown et al., 1998). In fMRI,
spatial maps, which exhibit synchronous temporal BOLD fluc-
tuations, are automatically determined. The benefit of this
method is that it is purely data driven, that is, it does not re-
quire an a priori hypothesis. This means that without the tradi-
tional temporal models used in classical fMRI analysis, ICA is
able to identify different types of signal fluctuations based on
their spatial and/or temporal characteristics. However, ICA
analysis is not an ideal method for mapping the smaller

Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea.

BRAIN CONNECTIVITY
Volume 2, Number 4, 2012
ª Mary Ann Liebert, Inc.
DOI: 10.1089/brain.2012.0079

218



subnetworks of the brain. Visualization of these networks
using ICA requires the use of a high number of components
that often give irrelevant components (Abou-Elseoud et al.,
2010; Abou Elseoud et al., 2011; Kiviniemi et al., 2009). Addi-
tionally, because interpretation of these can be very time con-
suming, ICA is a poor method for this type of analysis.

When mapping of these more specific subnetworks, ROI
analysis is commonly used. However, this technique also
has significant drawbacks, in that it requires an a priori hy-
pothesis for the seed region, which draws on anatomical or
functional data from a previous experiment. Additionally, a
variety of other issues are relevant, given that there is no
established standard for selecting these ROIs, since exact
seed size and location chosen can result in different functional
connectivity maps (Cordes et al., 2000, 2001). Finally, there is
no guarantee that the extracted time series is a true indepen-
dent variable or an accurate representation of the true signal
of interest (Fox and Raichle, 2007).

In this study, we present a new method for resting-state
analysis we term ‘‘localized ICA.’’ According to this method,
the ICA procedures are modified so that instead of performing
ICA on the whole brain, the data being analyzed are limited to
those obtained from a target of the brain. The aim of which is to
distinguish the subnetwork, which exists inside the larger
major cognitive networks. For the purpose of this study, we

isolated the primary motor cortex (M1) for localized ICA, be-
cause it displays a high degree of differentiation with respect
to different motor functions (Andersen et al., 1975; Cheney
and Fetz 1985; Cordes et al., 2000; Kwan et al., 1978; Nudo
et al., 1992; Waters et al., 1990; Xiong et al., 1999).

Methods

Image acquisition

Twenty-three healthy right-handed subjects, aged 20–32
years, with no history of neurological disease or head trauma
were scanned using a 3.0 T scanner (Model: Philips Intera
Achieva, Phillips Healthcare). Five-minute resting-state
scans involved the acquisition of 35 axial slices using a gradi-
ent echo planar imaging pulse sequence: TR = 3000 ms; TE =
35 ms; FOV (RL, AP, FH) = 220 mm · 140 mm · 220 mm;
voxel size (RL, AP) = 2.875 mm · 2.875 mm. During scanning,
participants were instructed to remain still with their eyes
open. Additionally, T1-weighted anatomical images were
obtained for each subject (TR = 9.902 ms).

Data preprocessing

Data preprocessing and processing were performed with
the FMRIB Software Library (FSL: www.fmrib.ox.ac.kr/fsl/)

FIG. 1. Flow chart of the localized independent component analysis (ICA) process. Data from a target-localized region of the
brain is isolated. Multivariate exploratory linear optimized decomposition into independent components (MELODIC) multi-
session temporal concatenation is performed for group analysis. Single-subject data is processed using MELODIC single-
session ICA. Correct representations of networks are confirmed using task ICA component as a model for resting-state general
linear model (GLM) analysis.
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and MRIcron (www.cabiatl.com/mricro/mricron/index.html).
Raw MRI images were converted to a compressed FSL for-
mat using MRIcron. Image preprocessing comprised of
skull stripping using a brain extraction tool, MCFLIRT
motion correction, spatial smoothing (using a Gaussian ker-
nel of FWHM 4 mm), and a temporal high-pass filter. Images
were finally normalized to the Montreal Neurological Insti-
tute (MNI) template with 2-mm resolution.

Data processing

Figure 1 shows a generalized flowchart of the localized
ICA process. Localized fMRI data were extracted from the
primary motor cortex and the thalamus. The thalamus was
included to determine whether connectivity between regions
could be detected. Masks for these regions were created us-
ing the Harvard–Oxford Cortical Structural Atlas and MNI
Structural Atlas in FSL. ICA was performed using FSL’s mul-
tivariate exploratory linear optimized decomposition into
independent components toolbox. Components for group-
localized ICA were obtained via multisession temporal con-
catenation across subjects, and data were separated into 20
independent components and tested for reproducibility
(Himberg et al., 2004). Components for all ICA analyses are
rendered using thresholded Z-stat maps.

Components were examined and compared against fMRI
activation maps from previous literature to determine the as-
sociated function of each component. In particular, four com-
monly performed motor tasks were chosen to compare ICA
components and activation maps (Lotze et al., 2000). These
tasks were left and right finger tapping, ankle flexing, and
lip pulsing. Talairach coordinates of the peak coordinates in
each task were converted to MNI space using the tal2icbm_fsl
transform algorithm (www.brainmap.org/icbm2tal/). These
coordinates from prior studies were then compared with
each component to determine whether a given component in-
cluded the coordinates from a specific task. Components with
the given coordinates were then designated as representative
networks for that specific task.

To compare efficiency of localized ICA, regular ICA was
performed using whole-brain data. High-order ICA is per-
formed using 70 components and tested for reproducibility.
Components that represent specific motor topographies are
evaluated and compared with those from localized ICA com-
ponents in the primary motor cortex.

Components that included the thalamus and motor cortex
were also examined to determine the extent to which local-
ized ICA could identify functional connectivity. The thalamus
is of interest primarily because its functions include relay-
ing motor signals to the cerebral cortex from the substantia

FIG. 2. Group results of
motor networks. Results are
overlaid on a whole-brain
background image. Shown
are localized ICA
components, which show
high similarity to task-
activated networks and
components, which may
represent a specific motor
network. (a) Right finger
tapping. (b) Left finger
tapping. (c) Bilateral lip
pulsing. (d) Foot movement.
(e–j) Unidentified
components.
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nigra, globus pallidus, and cerebellum (Massion and Rispal-
Padel, 1986; Percheron et al., 1996; Sommer, 2003). In addition
to established structural connectivity, these two regions also
showed functional resting-state connectivity (Fox and
Raichle, 2007). To test whether localized ICA could iden-
tify components representing interregional connectivity,
the analyzed data were expanded to include the thalamus.
Components exhibiting connectivity between the thalamus
and motor cortex were examined using a structural thalamic
connectivity atlas (www.fmrib.ox.ac.uk/connect/). Coordi-
nates in the region of the thalamus were input into the
connectivity tool and analyzed to determine probable struc-
tural connectivity.

To validate the localized ICA methodology for single-
subject analysis, localized ICA and whole-brain ICA were
performed for every subject using single-session ICA. Data
were decomposed into 30 components based on localized
data from the primary motor cortex and 70 components
based on whole-brain data. Candidate components for the
four motor tasks were noted. Time series from localized
ICA components were then used as models for a general lin-
ear model (GLM) analysis and the functional connectivity of
these components was mapped for the whole brain (min
Z > 2.3; cluster significance: p < 0.05). GLM results were then
visually compared with those of the whole-brain ICA analy-
sis. To determine the effectiveness of each method, a success
ratio was calculated according to number of subjects for
which a method successfully showed a given motor subnet-
work divided by the total number of subjects.

Results

Group-localized ICA results revealed possible components
for (Fig. 2a–d) lip pulsing, left and right hand movement, and
foot movement. These components were in the same region
as the peak-activated coordinates in previous studies (Lotze
et al., 2000). In addition to these components, localized ICA

revealed components that may represent networks responsi-
ble for other unidentified motor functions (Fig. 2e–j). Group
ICA of whole-brain data with 70 components revealed repre-
sentative networks for lip and foot movement.

When single-subject localized ICA components were used
as models in GLM analysis of whole-brain data, actual rep-
resentations of the specific motor functions were apparent
in many, but not all subjects (Fig. 3). For the left hand,
eight of 23 subjects showed accurate network representa-
tions with GLM whole-brain analysis. With the right hand,
12 out of 23 subjects showed accurate network representa-
tions. With the lips, 15 out of 23 subjects showed accurate
network representations. Finally, the foot showed accurate
representations in 11 out of 23 subjects. However, single-
subject ICA analysis of whole-brain data using 70 compo-
nents revealed less efficient results. For the left hand, five
out of 23 subjects showed accurate network representations.
For the right hand, eight out of 23 subjects showed accurate
network representations. With the lips, 14 out of 23 subjects
showed accurate network representations. Finally, for the

FIG. 3. Single-subject
results using localized ICA
components as a model for
GLM analysis. Localized ICA
components were chosen,
which resembled task-
activated motor networks.
The corresponding time series
is used for GLM analysis for
whole-brain connectivity for
that component.

FIG. 4. Comparison of results of localized ICA with normal
whole- brain ICA. Results show similar if not higher success
rate in isolating a target network in single-subject analysis.
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foot, 10 out of 23 subjects showed accurate network repre-
sentations (Fig. 4).

Inclusion of the thalamus along with the primary motor
cortex identified five components within the thalamus using
localized ICA; however, only one component showed robust
connectivity to the motor cortex (Fig. 5). This component
shows connectivity with the ventral lateral (VL) and ventral
anterior (VA) regions along with connectivity to the supple-
mentary motor cortex. Thalamic structural connectivity
using the coordinates (�14, �18, 4) identified the following
three highest probable regions of connectivity: 0.44 to the pre-
motor cortex, 0.38 to the primary motor cortex, and 0.22 to the
sensory cortex. In the contralateral thalamus, the coordinates
(14, �18, 4) resulted in the probable connectivity values: 0.70
to the premotor cortex, 0.40 to the primary motor cortex, and
0.22 to the prefrontal cortex.

Discussion

Previous specific subnetwork topological brain mapping
has predominately used task fMRI experiments and ROI
seed-based analysis of resting-state data. While ICA provides
a task and model-free approach to brain mapping, it has been
limited to having been used only for major network mapping.
However, the use of a more focused approach, localized ICA,
enables the mapping of specific subnetworks without the lim-
itations of task fMRI and ROI seed-based analysis.

The different components identified using localized ICA
reflect a well-segmented somatic topography of the primary
motor cortex. Many of these components coincide with re-
gions that are known to be activated during specific motor
task activation experiments (Fig. 2a–d). However, because
movement within an MRI machine is limited, we lack the
means to confirm, which motor task the other components
are responsible for (Fig. 2e–j). Although we can speculate
about their function based on their location relative to
known networks and the motor homunculus, their exact
function remains unclear in the absence of specific task activa-
tion maps to compare them. For example, because Figure 2i is
located below the area known to correlate with the lip move-
ment and because it shows bilateral correlation, we can try to
predict its function by referring to at the human motor ho-
munculus. Thus, Figure 2i may possibly represent swallow-
ing or tongue or jaw movement.

Previous studies have used high-order ICA, which decom-
poses the data into a large number of components, to func-
tionally segment the cortex (Abou Elseoud et al., 2011;
Kiviniemi et al., 2009). However, these components vary
depending on subject groups. Furthermore, it is not guaran-
teed that the desired networks will appear in the ICA analy-
sis. As our results show, of the 70 components used for group
level analysis, only the lip and foot components were iso-
lated. On the other hand, using only 20 components, localized
ICA showed all four chosen motor components. In essence,
we can force the ICA algorithm to display our target net-
works by localizing the data to a specific region of the
brain. Therefore, visualization of the four target motor com-
ponents was possible even with fewer output components.
Identification of these components was also facilitated by
having fewer components to process.

One disadvantage of localized ICA is that it isolates com-
ponents in a restricted region. Many connections within the
brain extend beyond one area or one lobe. If a given network
extends beyond the localized data region, this extra informa-
tion is lost. However, this limitation can be overcome by
using the target component as a time series model in GLM
analysis. This allows the creation of a functional ROI seed re-
gion. These results may prove to be more accurate than those
obtained via current methods for resting-state ROI seed anal-
ysis, because localized ICA allows for subject-specific ROIs to
be generated. To validate this feature, we performed single-
subject localized ICA followed by GLM analysis. Known
motor task components were identified for every individual
and used as time series GLM models for whole-brain analy-
sis. The majority of subjects showed correlations for the spe-
cific function that were predominately in the target region
(Fig. 3). This confirms the feasibility of using localized ICA
to determine task-specific networks for single-subject analy-
sis. Additionally, we compared the results obtained with
whole-brain ICA with a large number of components and lo-
calized ICA to evaluate the performance of each method on
single-subject analysis. We showed that localized ICA provi-
des more efficient results than whole-brain ICA (Fig. 4). In
particular, this approach produces better results with isolat-
ing right and left hand components, possibly because local-
ized ICA allows us to choose the specific region in which
the network exists rather than relying on the ICA algorithm
to randomly isolate the desired component.

FIG. 5. Representation of
thalamic motor connectivity.
Localized ICA component,
which shows connectivity to
the premotor regions of the
cortex and ventral anterior
and ventral lateral regions of
the thalamus.
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To identify the motor-specific corticothalamic network, we
included the thalamus to M1 in localized ICA. Analysis of
these regions revealed a connectivity map between the thala-
mus and the motor cortex (Fig. 5). Figure 5 shows a localized
ICA component that demonstrates connectivity with the pre-
motor cortex, and the VA and VL nuclei of the thalamus.
These nuclei are known to be connected to the motor cortex
( Jones et al., 1979; Morel et al., 1997; Niemann et al., 2000).
Additionally, the online thalamic connectivity atlas (www
.fmrib.ox.ac.uk/connect/) shows a high degree of structural
connectivity among these regions. Probable connectivity
within regions of the thalamus was highest to the premotor
and primary motor cortices. This result also suggests that
the thalamus can be segmented by localized ICA using a sim-
ilar approach done using diffusion tensor imaging in previ-
ous studies (Behrens et al., 2003; Johansen-Berg et al., 2005;
Wiegell et al., 2003).

The success isolating these specific motor subnetworks
offers many possible applications in addition to resting-
state network mapping. Localized ICA could offer many
clinical applications such as providing valuable presurgical
information. Additionally, targeting other or multiple re-
gions, such as the somatosensory, auditory, or visual cortex,
enables us to examine the functional segmentation of these re-
gions along with functional connectivity between these re-
gions. This can be further applied clinically to see how
these inter/intraregional connectivity changes with disease
progression.

Although localized ICA provides a powerful tool for the
identification and mapping of specific sub-networks, it is
not 100% effective in single-subject analysis (Fig. 4). In
some cases, subjects did not show any well-defined motor
topography. However, this may be is due to single-subject
variability. Figure 4 shows that the two least successfully
identified components were left and right hand movement.
Our criteria for identifying these components were unilat-
eral correlations within either the left or right hemisphere.
However, some subjects may exhibit higher levels of bilat-
eral correlation in these regions during the resting state. If
this were the case, the ICA algorithm would treat two re-
gions as one component, which would result in their
being overlooked. Additionally, many components that
appeared to represent motor networks in localized ICA
were found to be parts of another larger network when
using GLM analysis.

Conclusion

Localized ICA provides a novel method for mapping spe-
cific subnetworks that cannot be visualized via conventional
ICA. Studies using ICA have been predominately used to dis-
tinguish major cognitive networks and visualization of
smaller networks was done using ROI analysis, which re-
quires an a priori hypothesis. Localized ICA determines statis-
tical independence among relatively high correlated BOLD
signals, thereby serving as a data-driven method that can
be used to create functional ROIs and to examine whole-
brain resting-state data. Additionally, since this method can
target any region of the brain, it can be applied to functional
segmentation of cortical and subcortical structures and be
used to determine specific patterns of connectivity between
target regions.
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