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Abstract. The nonadiabatic saddle-point method is used to investigate the
process of high-order harmonic generation in a gas, driven by few-optical-cycle
pulses with above-saturation intensity and controlled electric field. The peculiar
effects produced on the generation process by temporal reshaping of the driving
field, induced by propagation in a highly ionized gas cell, can be used to control
the electron quantum paths, which contribute to the harmonic generation process.
It is shown that complete spectral tunability of the harmonic peak position
over the entire extreme-ultraviolet spectrum, obtained by changing the carrier-
envelope phase of the driving pulses, can be understood by considering the
effects of driving pulse distortions on the phase of the relevant electron quantum
paths.
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1. Introduction

The production of extreme-ultraviolet (XUV) radiation by using the process of high-order
harmonic generation (HHG) in a gas is by now a well-established method for the generation
of ultrashort XUV pulses, with duration down to the attosecond temporal range [1], which
has opened the way to a number of important applications, such as ultrafast spectroscopy in
the XUV, high-resolution imaging, bio-microscopy, lithography and seeding of free-electron
lasers (FELs). Moreover, it has been demonstrated that HHG provides a powerful way for
reconstruction of the highest occupied molecular orbital (HOMO) in molecules [2]. The
HHG process is understood in the framework of the semiclassical three-step model [3, 4]:
the excitation of a gas medium with femtosecond light pulses with intensity of the order of
1013–1015 W cm−2 leads to tunnel ionization of an atom or molecule; the liberated electron is
then accelerated by the laser field and finally recombines with the parent ion, emitting excess
energy in the form of high-energy photons. Various numerical methods, based on the strong-field
approximation (SFA) [5], have been developed for the investigation of the physical processes at
the basis of HHG. The nonadiabatic saddle-point (NASP) method has proven to be a powerful
numerical technique, particularly in the case of few-optical-cycle driving pulses.

In the framework of the NASP method, the XUV generation process is described in terms of
the complex trajectories (quantum paths) followed by the electrons from the ionization instant
to recombination with the parent ion. Over the last few years, this numerical technique has
been used for the investigation of various physical processes: (i) the role of the carrier-envelope
phase (CEP) of few-cycle pulses on the short and long quantum paths in HHG [6, 7]; (ii) the
polarization gating technique for the generation of isolated attosecond pulses [8, 9]; (iii) HHG in
diatomic molecules [10]; (iv) terahertz-assisted HHG in atoms [11]; and (v) the CEP role of few-
cycle driving pulses with above-saturation peak intensity in the ionization gating technique [12].
In the latter case, the sub-cycle ionization dynamics of the gas medium used for XUV generation
is a crucial process, which strongly affects the temporal and spatial characteristics of both the
XUV and the infrared (IR) pulses. Indeed, the propagation of high-intensity few-cycle pulses
in an ionizing medium leads to distortion of the temporal evolution of the pulse electric field,
which can strongly influence the XUV generation process [13–16].

We have experimentally demonstrated recently that the use of high-intensity driving pulses
with few-optical-cycle duration and stable CEP offers the possibility to achieve complete
spectral tunability of the harmonic peak position over the entire XUV spectrum, upon changing
the CEP of the excitation pulse [17]. This behavior has been interpreted in terms of temporal
reshaping of the electric field of the driving pulses in an ionizing gas, which offers the
possibility to control the electron quantum paths contributing to HHG. We demonstrated that
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such a quantum path control can be interpreted as a single-atom effect. In this work, we
report on a detailed investigation of the single-atom response, obtained in the framework of
the NASP method. In particular, we calculate the emission rates of the individual quantum
paths as a function of the CEP of the driving pulse after propagation in a low-pressure gas
cell. Moreover, we show that a careful analysis of the different contributions to the phase of
the electron quantum paths leads to a simple physical interpretation of the observed tunability
of the harmonic emission, in terms of plasma-induced chirp of the driving pulses. The paper
is organized as follows. Section 2 contains a description of the theoretical method used in the
paper and an investigation of the propagation effects on the driving field. After briefly recalling
the main experimental result reported in [17], section 3 presents an analysis of the experimental
data in terms of the NASP calculations. Finally, section 4 provides the conclusions.

2. Theoretical model

Using the saddle-point method, the Fourier transform of the single-atom dipole moment, x(ω),
can be written as a coherent superposition of various complex quantum paths, corresponding
to the complex saddle-point solutions (ps, ts, t ′

s), where ps is the stationary value of the electron
momentum and t ′

s and ts are the ionization and recombination instants, respectively. Since in
the case of high-intensity excitation, ground-state depletion cannot be neglected, x(ω) can be
written as [7]

x(ω)=

∑
s

|xs(ω)| ei2s(ω) exp

[
−

∫ Re(t ′s)

−∞

w(t ′′) dt ′′

]
, (1)

where xs(ω) is the contribution of the sth quantum path to the total single-atom spectrum,2s(ω)

is the phase of the complex function xs(ω) and w(t) is the tunnel ionization rate. We calculated
w(t) by using the Ammosov, Delone and Krainov (ADK) theory [18]. It is known that such a
model could give an overestimation of the actual ionization rate when applied to intense and
short pulses [19–21]. It is important to point out that, due to the very low gas pressure used in
the experiments, the nature of the physical mechanism under investigation is not affected by
the accuracy of the approximation adopted to calculate the ionization rate. Indeed, our choice is
supported a posteriori by the excellent agreement between the calculations and the experimental
results. The saddle-point equations can be written as a set of four equations for the real and
imaginary parts of t ′

s and ts . It is quite simple to solve such a set of equations numerically if
the driving electric field used in the calculations has an analytical form, i.e. if it is possible to
know the value of the electric field for any complex time. In order to solve the saddle-point
equations for electric fields with arbitrary temporal evolution, we have employed a modified
version of the method reported by Kovács and Toşa [22]. In [22], the vector potential, A(t), and
its integral, α(t)=

∫ t
−∞

A(t ′′) dt ′′, are approximated in the complex domain by expanding them
in a Taylor series around the real time values. This approximation is valid since Im(ts)� Re(ts)

and Im(t ′

s)� Re(t ′

s) [23]. Taylor expansion requires us to calculate the numerical derivatives of
the driving field. This operation could be nontrivial if high-order derivatives were required,
since to overcome noise propagation through calculations could be difficult. We propose a
different approach, easier to implement in a standard numerical computing environment. We
have approximated A(t) and α(t) by making a polynomial fit of the two functions on the real
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Figure 1. Results of the NASP calculations for driving electric field defined in
an analytical (solid curves) and a numerical (dashed curves) way. (a) Single-
atom emission rate; (b) imaginary and real parts of the ionization time t ′

s and
recombination time ts for the 13th and 14th complex quantum paths. In this
calculation, both long and short quantum paths are taken into account. The
13th trajectory (labelled by 13 in (b)) is the 7th short path; the 14th trajectory
(labeled by 14 in (b)) is the 7th long quantum path (all the trajectories are
ennumerated with increasing numbers starting from the first available short path).
Parameters used in the calculation: electric field E(t)= E0 cos2(t/τ) cos(ω0t +
ψ); the laser central wavelength 750 nm; pulse duration 6 fs; pulse peak intensity
9 × 1014 W cm−2; CEP ψ = 0; argon gas.

time axis and then exploiting the analytical extension of the polynomials:

A(t + iζ )'

∑
n

an(t + iζ )n, (2)

α(t + iζ )'

∑
n

bn(t + iζ )n. (3)

We tested the method assuming an input electric field with the analytical expression E(t)=

E0 cos2(t/τ) cos(ω0t +ψ). We have calculated the emission rates and the imaginary and real
parts of the ionization and recombination times using the analytical expression of the electric
field and its approximation. As shown in figure 1, the agreement between the two numerical
procedures is excellent. Indeed, by using polynomials with degree n up to 30, we found that the
relative difference between the two numerical procedures is confined to a value <0.01%.

The propagation of the driving IR field in the gas cell was calculated by using a three-
dimensional (3D) model, which solves the Maxwell equations for the IR in the framework of the
slowly evolving wave approximation (SEWA) [24]. By using a coordinate frame that is moving
at the group velocity vg of the pulse and assuming radial symmetry, the driving electric field
amplitude, E(r, z, t), where z and r are the propagation and transverse coordinates, respectively,
can be obtained by numerical solution of the following equation [25]:

∇
2 E(r, z, t)−

1

c2

∂2 E(r, z, t)

∂t2
=

1

ε0c2

∂2 P(r, z, t)

∂t2
, (4)
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Figure 2. Calculated argon ion populations calculated at the input of the gas cell.
Parameters used in the calculation: pulse duration 5 fs; pulse central wavelength
750 nm; pulse peak intensity 3.5 × 1015 W cm−2; CEP ψ = 0.

where P(r, z, t) is the polarization response of the medium and c is the vacuum velocity of
light. Since the pressure used in the experiments and assumed in the numerical simulations is
very low (3 torr), it is possible to neglect the loss of driving light energy due to ionization. In
this case the second time derivative of the polarization is given by [25]

∂2 P(r, z, t)

∂t2
'

e2

me
ne(r, z, t)E(r, z, t), (5)

where ne is the electron density and e and me are the electron charge and mass, respectively.
Therefore, equation (4) can be written as follows [26]:

∇
2 E(r, z, t)−

1

c2

∂2 E(r, z, t)

∂t2
=
ω2

p(r, z, t)

c2
E(r, z, t), (6)

where ωp = [e2ne(r, z, t)/ε0me]1/2 is the plasma frequency. This equation takes into account
both temporal plasma-induced phase modulation and spatial plasma lensing effects, while it
does not consider the linear gas dispersion and absorption of the driving beam, which are
negligible under our conditions. This equation is then solved in the framework of the SEWA,
which is applicable since the electric field changes along a propagation distance equal to the
wavelength, λ, of the driving field are small (i.e. |∂E/∂z| � E/k). As pointed out in [24],
the SEWA requires that not only the envelope of the electric field, but also the CEP do not
significantly change over a propagation distance equal to λ, so that it does not impose a
limitation on the pulse duration. Moreover, the electric field is assumed to be slowly varying
in the transverse dimensions at a distance comparable to λ (i.e. |∂E/∂r | � E/k).

The electron density, ne, was calculated using the ADK model in a nonadiabatic way. The
contribution to the total electron density coming from multiple ionization, induced by the high
excitation intensity, is calculated by applying the ADK in sequence. Figure 2 shows, as a dotted
line, the temporal evolution of the electric field envelope of a 5 fs pulse (full-width at half-
maximum (FWHM)) with the central wavelength of 750 nm and the calculated ion yield in
the case of argon, assuming an excitation peak intensity I = 3.5 × 1015 W cm−2 and a pulse
CEP ψ = 0. Due to the high intensity, multiple-charge ions, Arn+, are generated with n up to
5. Neutral atom, Ar+ and Ar2+ populations are completely depleted on the leading edge of the
pulse, so that the electron density is strongly affected by multiple ionization.
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Figure 3. Electric field of a 5 fs driving pulse for three different positions
inside a gas cell containing argon at a pressure p = 3 torr. Parameters used in
the calculation: pulse central wavelength 750 nm; pulse peak intensity 3.5 ×

1015 W cm−2; CEP ψ = 0.

We then calculated the evolution of the electric field of the linearly polarized, 5 fs driving
pulse along propagation in a cell containing argon at a static pressure p = 3 torr. We assumed a
laser beam with a truncated-Bessel spatial profile, which corresponds to the fundamental EH11

hybrid mode of the hollow fiber used for pulse compression [27, 28]. The temporal evolution
of the electric field at the input of the cell (z = 0) was E(t)= A0 cos(ω0t +ψ) exp(−t2/2τ 2).
Figure 3 shows the calculated electric field (assuming r = 0) for three different z positions in
the gas cell. The temporal evolution of the electric field is significantly affected by propagation
in the ionizing medium. While pulse duration is only slightly influenced, as shown by dashed
lines in figure 4, which display the electric field envelope, the propagation induces a strong chirp
on the leading edge of the pulse. Already after a propagation of 1.5 mm (see figure 4(b)), the
instantaneous frequency, ω0(t) (defined as the first derivative of the laser field temporal phase),
is no longer constant and displays a complex peaked evolution in a temporal window between
−5 fs and 0 fs (red dotted curve). Such complex behavior can be simply understood in terms of
the refractive index change induced by the temporal variation of the electron density, ∂ne/∂t .
Indeed, the time-dependent frequency modulation can be calculated as [29]

δω0 =
e2z

2πmeω0c

∂ne

∂t
. (7)

Since the ionization rate strongly changes when the driving field presents an amplitude
maximum, we expect to observe an increase in the instantaneous frequency for time values close
to the maxima of the electric field, as indeed shown in figures 4(b) and (c): the instantaneous
frequency displays clear peaks in correspondence to the local maxima of ∂ne/∂t .

3. Single-atom harmonic spectra: the role of propagation in the generation medium

We recently reported on the generation of tunable XUV radiation by using high-intensity, few-
cycle driving pulses [17]. Harmonic generation has been achieved by focusing 5 fs IR pulses
(peak intensity I = 3.5 × 1015 W cm−2) in a 2.5 mm long cell filled with argon at low static
pressure (2.5–3 torr). The gas cell was placed after the laser focus, so that short quantum paths
predominantly contribute to the XUV generation [30, 31]. A 200µm diameter pinhole was
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positioned in the XUV-beam path in order to select only the on-axis radiation with homogeneous
characteristics (details can be found in [12]). Figure 5 displays the measured harmonic spectra
for five different CEP values, showing complete spectral tunability of the harmonic peaks over
the entire spectral range.

In order to obtain a clear physical picture of the observed tunability, we have used the NASP
method to calculate the contributions of electron quantum paths to the XUV generation process.
As a result of the very low gas pressure used in the experiment, the calculated spatial reshaping
of the driving pulse turns out to be rather weak. Due to the selection of the on-axis XUV
components obtained by the use of the spatial filter on the XUV beam, in the NASP calculations
we have considered the on-axis (r = 0) electric field, whose temporal evolution is shown in
figure 3. Figures 6(a)–(c) show the XUV atomic spectra calculated for various CEP values of
the driving field in a range of 3π , at three different positions inside the gas cell. Figures 6(d)–(f)
show the corresponding harmonic emission rates associated with the relevant short quantum
paths for two CEP values. The short quantum paths are labelled with increasing numbers starting
from the first available complex trajectory. The spectral characteristics of the harmonic emission
strongly depend on the position inside the gas cell, i.e. on the particular temporal evolution
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Figure 5. Experimental XUV spectra generated in a 2.5 mm thick argon cell
by 5 fs pulses with 3.3 ± 0.3 × 1015 W cm−2 peak intensity and five CEP values
separated by π/4.

of the driving electric field. At the input of the cell, z = 0, the XUV spectra show a periodic
evolution upon changing the CEP by π . The harmonic peak position is negligibly affected by
CEP; only in the cutoff region (photon energies larger than ∼50 eV) the peak position is CEP
dependent (as has already been observed in the case of few-cycle driving pulses [32, 33]). As
shown in figure 6(d), for particular CEP values only one short path dominates thus giving a more
continuous spectrum. Upon changing the CEP by π/2 the total emission rate is predominantly
generated by two quantum paths (paths 3 and 4), which give similar contributions. In the case
of z = 1.5 mm, a clear dependence of the harmonic peak position versus CEP is obtained in
the entire spectral range (see figure 6(b)). Also in this case, the main contribution to the total
emission rate is due to quantum paths 3 and 4, but their CEP dependence is changed. At the
output of the gas cell (z = 2.5 mm) the emission rates of the third and fourth short quantum
paths get closer in absolute value. Even for this z-position, the major contributions to the total
emission rate originate from the third and fourth quantum paths. Indeed, the less steep leading
edge of the driving pulse (see figure 4(c)) causes ground-state population depletion to occur
later in time. Thus, the contribution of the fifth short quantum path becomes more relevant even
if its emission rate is always at least two orders of magnitude smaller than the XUV spectra
associated with complex trajectories 3 and 4 (figure 6(f)). As clearly shown in figure 6(c) and
(i), at z = 2.5, the harmonic peak position shows complete tunability over the entire spectral
range. This is in excellent agreement with the experimental results shown in figure 5. It is worth
pointing out that at any position inside the cell, the total emission rate can be associated with
only two recollision events, so that only two attosecond pulses are predominantly generated.

In the spirit of the NASP model, the single-atom harmonic emission rate, W (ω), can be
written as

W (ω)' ω3
|x(ω)|2 ' ω3

|

∑
s

|x̂s(ω)| ei2s(ω)|
2
, (8)
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emission as a function of the CEP at a z position inside the generation cell equal
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= ψ0 +π/2; (g–i) harmonic emission
rates for the two selected CEP values: ψ0 (red line) and ψ ′ (black line). The same
parameters as in figure 3.

where

x̂s(ω)= xs(ω) exp

[
−

∫ Re(t ′s)

−∞

w(t ′′) dt ′′

]
. (9)

Therefore, in the case under investigation, W (ω) can be approximated as

W (ω)' ω3
|

∑
s=3,4

|x̂s(ω)| ei2s(ω)|
2
. (10)

The position of the harmonic peaks is determined by the condition of constructive interference
between the relevant quantum paths:

12(ω)=24(ω)−23(ω)= 2mπ (m ∈ Z). (11)

Figure 7 shows the calculated phase difference, 12(ω), at the input (figure 7(a)) and at the
output (figure 7(b)) of the cell. At z = 0,12 increases almost linearly with photon energy, with
negligible dependence upon CEP, apart from a small deviation for the high-energy region of the
spectrum [6]. The corresponding harmonic emission rates, calculated using equation (10) for
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two different CEP values and shown in the inset of figure 7(a), are characterized by harmonic
peak positions almost insensitive to the CEP of the driving field, in agreement with the results
obtained by considering the contributions of all the quantum paths (figures 6(a) and (g)). At
the output of the gas cell, 12 shows a strong dependence on CEP. By changing the CEP value
of π/2 the phase difference curve is clearly shifted. Therefore, the condition of constructive
interference is obtained for different energy values and the corresponding harmonic peaks are
out of phase, as displayed in the inset of figure 7(b), in agreement with the results obtained by
considering the contributions of all the quantum paths (figures 6(c) and (i)).

The CEP effects on the quantum paths, giving rise to the tunability of the harmonic
radiation, can be understood on taking into account the various contributions to the phase of
each complex electron trajectory. The phase of the i th quantum path can be written as

2i(ω)= ωti − Si(ω)+χi(ω), (12)

where the first term depends on the recombination time ti(ω), the second is the stationary phase
Si(ω) and the third is a residual phase term, which turns out to be negligible compared to the
previous two terms. Therefore, we will concentrate our attention on ωti and Si(ω). In particular,
the first can be decomposed into two contributions, which depend on the ionization time t ′

i (ω)

and the time spent by the free electron in the continuum, τi(ω): ωti = ω(t ′

i + τi). According to
our analysis the phase difference between the third and the fourth short paths can then be written
as

12(ω)= ω1t ′ +ω1τ −1S +1χ. (13)

The role played by the various terms of equation (13) can be better analyzed by considering
the difference between the quantity 12 calculated for two CEP values, ψ , which differ by π/2
(ψ = 0 and ψ = π/2):

120−π/2 =12|ψ=0−12|ψ=π/2= ω1t ′

0−π/2 +ω1τ0−π/2 −1S0−π/2 +1χ0−π/2, (14)

where 1χ0−π/2 ≈ 0. The results are shown in figure 8, at the input of the gas cell (z = 0, solid
curves) and at the output of the cell (z = 2.5 mm, dashed curves). At z = 0,120−π/2 (black solid

New Journal of Physics 14 (2012) 033009 (http://www.njp.org/)

http://www.njp.org/


11

20 25 30 35 40 45 50

-1

0

0.5

1

Photon energy (eV)

-0.5

Δ
ΔS

Δ
Δt

’
Θ

(u
ni

t o
f 

2
)π

0-
/2

0-
/2

0-
/2

0-
/2

π
π

π
π

; -
;

;
τ

ωΔτ0- /2π

ωΔt’0- /2π

ΔΘ0- /2π

-ΔS0- /2π

ΔΘ0- /2π

-ΔS0- /2π

ωΔτ0- /2π

ωΔt’0- /2π

Figure 8.120−π/2, −1S0−π/2, ω1τ0−π/2 and ω1t ′

0−π/2 in units of 2π calculated
at z = 0 (solid curves) and z = 2.5 mm (dashed curves).

curve in figure 8) slowly increases from zero on increasing the photon energy; in the spectral
region where most of the harmonic energy is contained, 120−π/2 does not exceed π/5. In this
case, the phase difference term depending on the time spent in the continuum, ω1τ0−π/2, is
always positive, in the energy range of the figure, while the phase difference terms −1S0−π/2

and ω1t ′

0−p/2 have negative values, and almost compensate for the positive term, at least in the
low photon energy region; in the cutoff region the total phase difference is dominated by the
term ω1τ0−π/2. At the output of the gas cell (dashed curves in figure 8), the phase difference
terms −1S0−π/2 andω1τ0−π/2 are similar to the corresponding terms calculated for z = 0, while
the term related to the ionization times, ωt ′

0−π/2, exhibits completely different behavior versus
photon energy and dominates the total dephasing120−π/2. Therefore, we can conclude that the
shift with CEP of the 12(ω) curve at z = 2.5 mm (see figure 7(b)) can be understood in terms
of a modification of the ionization times difference of the two relevant quantum paths, induced
by propagation of the driving pulse in the ionizing medium.

From a physical point of view it is possible to show that the different behavior of 1t ′

observed for different values of the propagation coordinate z is directly related to the plasma-
induced chirp of the driving pulse. Indeed, it is well known that in the case of short quantum
paths, a good estimation of the difference between the ionization times of two consecutive
paths is the half-optical cycle: T0(t)/2 = π/ω0(t). Therefore, for a particular photon energy,
it is possible to estimate 1t ′ by calculating an average local value of T0(t)/2 = T av

0 /2, where
T av

0 is defined as the inverse of the average value of the instantaneous frequency ω0(t) between
t ′

3 and t ′

4 (such a procedure is shown in figures 9(a) and (b)). Figure 9(c) shows 1t ′ and T av
0 /2

as a function of the CEP of the driving pulse, calculated for a particular photon energy (35 eV).
In the case of z = 0, both 1t ′ and T av

0 /2 do not show a clear dependence on the CEP value.
In contrast, in the case of z = 2.5 mm, 1t ′ and T av

0 /2 change in the same way as a function of
CEP. The offset between the 1t ′ and T av

0 /2 curves in the case of z = 0, which decreases for
z = 2.5 mm, can be easily explained. Indeed, for a fixed energy, 1t ′ is equal to T0/2 only if
the driving field is monochromatic. The third and the fourth quantum paths are located on the
leading edge of the driving pulse, so that they are affected by the strong nonadiabatic increase
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Figure 9. Comparison between the difference in the ionization times1t ′ and the
average half-optical cycle T av

0 /2. Panels (a) and (b) show the IR envelope (green
line), ω0(t) (red line), the ionization (solid black or blue lines) and recombination
(dashed black or blue lines) times associated with the third and the fourth short
trajectories calculated at z = 0 and z = 2.5 mm, respectively. The interval of ω0

drawn with a dashed line marks the region in which the average is performed in
order to obtain T av

0 = 2p/ωav
0 . All quantities are evaluated at a CEP value ψ = 0.

Figure (c) shows 1t ′ (solid lines) and T av
0 /2 (dashed lines) for a fixed photon

energy value of 35 eV and different driving field CEP values (z = 0, black lines;
z = 2.5 mm, blue lines).

of the electric field at the input of the gas cell. After the propagation in the ionizing medium
the shape of the field changes and the rising edge becomes less steep (as shown by the green
curves in figures 9(a) and (b)), thus reducing the nonadiabatic effect and consequently the offset
between 1t ′ and T av

0 /2.

4. Conclusions

We have used the nonadiabatic saddle-point method, with ground-state depletion correction,
for the theoretical investigation of the spectral properties of high-order harmonic radiation
generated by high-intensity, few-optical-cycle pulses. The generation of tunable XUV radiation,
by using few-optical cycle driving pulses with high intensity and controlled electric field, is
understood in the framework of a single-atom approach. A simple numerical approximation
is introduced to perform NASP calculations in the case of driving electric fields with
arbitrary temporal evolution. By analyzing the phase terms of the relevant quantum paths, we
demonstrated that only the term related to the electron ionization times turns out to induce
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relevant effects on the observed CEP dependence of the XUV radiation. Finally, a simple model
has been used, showing that the observed tunability can be understood in the framework of a
single-atom model as a result of the plasma-induced chirp of the driving field. The nonadiabatic
saddle point approach offers a powerful method for understanding the physical mechanisms
involved in a number of strong-field phenomena induced by few-optical-cycle pulses and can
be used as an effective guideline for a simple interpretation of the experimental results.
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