
LOW-POWER LOG-MAP TURBO DECODING
BASED ON REDUCED METRIC MEMORY ACCESS

Dong-Soo Lee and In-Cheol Park*

SOC R&D Center, System LSI, Samsung Electronics, Korea
*Department of Electrical Engineering and Computer Science, KAIST, Korea

E-mail address: dongsoo3.lee@samsung.com

ABSTRACT
Due to the powerful error correcting performance, turbo codes
have been adopted in many wireless communication standards.
Although several low-power techniques have been proposed,
power consumption is still a major issue to be solved in practical
implementations. Since turbo decoding is classified as a
memory-intensive algorithm, reducing memory accesses is
crucial to achieve a low power design. To reduce the number of
memory accesses for maximum a posteriori (MAP) decoding,
this paper proposes an approximate reverse calculation of
backward metrics which can be implemented with simple
computational complexity. Simulation results show that the
proposed method applied to W-CDMA standard reduces the
access rate of the backward metric memory by 90% without
degrading error correcting performance. A prototype turbo
decoder based on the proposed reverse calculation achieves 30%
power reduction compared to the conventional decoder.

1. INTRODUCTION
Since turbo coding was introduced by Berrou et al. in 1993 [1], it
has been recognized as one of the most powerful forward error
correction codes. Recently, turbo codes were accepted in many
standardized third-generation mobile radio systems such as W-
CDMA and CDMA 2000, and various studies have focused on
their practical implementations [2][3]. A turbo decoder consists
of two decoding components of which operates iteratively to
produce improved soft outputs by using the outputs of the other
component. However, owing to its iterative decoding procedure
and the requirement of frequent memory accesses, the turbo
decoder suffers from long latency and high power consumption.

As the turbo decoder is included in a class of highly memory-
intensive systems, a significant amount of power is consumed for
memory accesses, resulting in a power bottleneck even though
the decoder uses the sliding window processing to reduce the
memory size greatly. It has been reported that the memory access
power accounts for more than 50% of the entire power
consumption [4]. A complex address generation algorithm for the
interleaving is implemented on-the-fly instead of storing the
interleaver addresses in a table [5]. The partial metric storage
method proposed in [4] replaces some parts of the metric
memory to a register file and computes the lost metrics
redundantly. The weakness of this method is that the power
consumed in the register file increases rapidly if many metric
values are stored into a large-sized register file. In practice,
therefore, the replacement is limited to up to a quarter of the
memory size.

Decoder
1

Decoder
2

Interleaver

deinterleaver

APP APP

Interleaver

Demultiplexer

Systematic data

Parity data

Decoded output

Figure 1. Structure of a turbo decoder

Reverse calculation of state metrics is another efficient method to
reduce memory accesses as reported in [6][7], which
demonstrated that most metric memory accesses can be
substituted by the reverse computation of forward or backward
metrics. The rationale behind this approach is that the power
need to access a memory is greater than that of the corresponding
computation, which is usually valid for today’s deep submicron
technology [8]. However, the quantization and singular matrix
problems are not solved in [6], and the modifications introduced
to solve these problems are not efficient in terms of real
applications [7].

In this paper, we propose a new approximate reverse
calculation for backward metrics. In the process of backward
metrics calculation, about 10% of the calculated metrics
corresponding to singular matrix calculations are written into a
memory and the others are not saved because they can be
recovered by the reverse calculation. When backward metrics are
needed, they are read from memory or recovered by the proposed
reverse calculation.

2. LOG-MAP ALGORITHM
The turbo decoding structure consists of two soft-input, soft-out
(SISO) decoding modules which are separated by a pseudo-
random interleaver/deinterleaver. A conventional turbo decoder
is shown in Fig. 1. Based on the MAP algorithm, the output for
the thk symbol is expressed in log-likelihood ratio (LLR) form
as

 1 1 1 11

1 1 1 10

() () ()
ln

() () ()
k k k k k k ks

k
k k k k k k ks

s s s s
s s s s

α γ β
α γ β

+ + + +

+ + + +

⋅ → ⋅
Λ =

⋅ → ⋅
∑
∑

 (1)

, where ks represents a state of the encoder at time k , and

1k ks s +→ is the state transition from state ks to state 1ks + , and
0s and 1s denote the set of all the possible state transitions

associated with message bit 0 and 1, respectively.
To simplify the calculation of α and β metrics, the Jacobian

logarithm is applied to produce the following equations (2) and
(3), where A is the set of states at time 1k − that are connected

31670-7803-8834-8/05/$20.00 ©2005 IEEE.

to state ks , and B is the set of states at time 1k + that are

connected to state ks :

 []
1

1 1 1ln () () max* () ()
k

k k kk k k k k ks A
s s s s sα α α γ

−

− − −∈
 = = + →  (2)

 []
1

1 11 1ln () () max* () ()
k

k k kk k k k k ks B
s s s s sβ β β γ

+
+ ++ +∈

 = = + →  (3)

In the above equations, max* is defined as
 | |max* (,) ln() max(,) ln(1)x y y xx y e e x y e− −= + = + + (4)
and γ metrics are represented as

 [] []1 1ln () () ln (|) ()kk k k k k k k ks s s s P P uγ γ+ +→ = → = ⋅y x (5)

, where ku is the input bit necessary to cause the transition from

ks to 1ks + , ()kP u is the a priori probability of ku , and kx and

ky are the transmitted and received codewords associated with
this transition. A specific expression for γ metrics can be
induced from the channel condition and the modulation scheme.
Therefore, the LLR outputs can be obtained by

1 11 11

1 11 10

max* () () ()

max* () () () .

k k kk k k k ks

k k kk k k ks

s s s s

s s s s

α γ β

α γ β

+ ++ +

+ ++ +

 Λ = + → + 

 − + → + 

 (6)

As indicated in equations (2) and (3), α and β metrics are
recursively calculated in the forward and backward directions,
and thus they are called forward and backward metrics,
respectively. In a conventional way, as the directions of updating
α and β metrics are opposite to each other, one of the two
metrics is calculated and stored in a metric memory before
computing the other metrics, and retrieved later when it is needed
to compute the LLR output defined in equation (6). In this paper,
we assume that β metrics are calculated prior to α metrics.

3. APPROXIMATE REVERSE
CALCULATION

A turbo encoder with BPSK modulation can be represented by a
trellis that has butterfly pairs when the first and the last shift
registers are connected in both of the feedback and feed-forward
polynomials. This is a valid condition for a good RSC encoder
[6]. In W-CDMA, four butterfly pairs shown in Fig. 2 are
constructed as

() ()
() ()

0 4 0 1 1 5 2 3
1 1 1 1

2 6 4 5 3 7 6 7
1 1 1 1

, , , ,
.

, , ,

k k k k k k k k

k k k k k k k k

β β β β β β β β

β β β β β β β β
+ + + +

+ + + +

  
 
  

 (7)

The first pair is represented as

()
()

0 1
1 , 1, 1 1 ,1,1

0 1
1 ,1,1 1 , 1, 1

0

4

ln

ln

k k k k

k k k k

k

k

e e

e e

β γ β γ

β γ β γ

β

β

+ − − +

+ + − −

+ +

+ +

= +

= +
 (8)

Assuming BPSK modulation and the additive white Gaussian
noise (AWGN) channel, the branch metric in log domain is
expressed as
 { }, , 0.5 ()k d c s pd y La y cγ = × + + (9)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

-1

1

1
-1

1

-1

-1

1

-1

1

1

-1
1

-1

-1
1

W-CDMA Turbo Encoder Trellis Diagram

Transition by -1

Transition by 1

Calculation Direction

Time

k k+1

0
1kβ +

0
kβ

1
1kβ +

1 1γ − −

11γ

1 1γ − −

11γ

4
kβ

A butterfly pairA butterfly pair

Figure 2. Butterfly pairs in a W-CDMA turbo encoder
trellis diagram

, where k is the time index, sy is the channel observation of a
systematic output, py is the channel observation of a parity bit,

La is a priori information and c and d are the systematic and
parity bit anticipated from the trellis diagram, respectively. Since

, ,k d cγ has the same value as , ,k d cγ − −− , the reverse calculation of
(8) can be derived as

0 4
, 1, 1 , 1, 1

, 1, 1 , 1, 1

4 0
, 1, 1 , 1, 1

, 1, 1 , 1, 1

0

1 2 2

1

1 2 2

ln

ln .

k k k k

k k

k k k k

k k

k

k

e e
e e

e e
e e

β γ β γ

γ γ

β γ β γ

γ γ

β

β

− − − −

− − − −

− − − −

− − − −

+ −

+ −

+ −

+ −

 − =
 − 
 − =
 − 

 (10)

 The other butterfly pairs have the same structures as equation
(10) except the superscripts. To achieve a practical
implementation, equation (10) is simplified by using the
following modification
 () ()ln min(,) ln 1 .x yx ye e x y e −− = + − (11)

 When 2x ye − < , the second term, ()ln 1x ye − − , is on the steep

curve as shown in Fig. 3, requiring an impractically large lookup
table. On the other hand, when 2x ye − >> , the second term can

be approximated to x y− . By applying equation (11),
0

1kβ + is
rearranged as

() ()

()

0 4
, 1, 1 , 1, 1

, 1, 1 , 1, 1

0 4
, 1, 1 , 1, 1 , 1, 1 , 1, 1

0 4
, 1, 1

, 1,

0

1 2 2

2 2

20 4

, 1, 1 , 1, 1

4
, 1, 1

ln

ln ln

min , ln 1

2 ln

k k k k

k k

k k k k k k

k k k

k

k

k k k k

k

e e
e e

e e e e

e

e

β γ β γ

γ γ

β γ β γ γ γ

β β γ

γ

β

β γ β γ

γ

− − − −

− − − −

− − − − − − − −

− −

− −

+ −

+ −

+ − −

− +

− − − −

− −

 − =
 − 

= − − −

 
= + − + − 

 

+ − (){ }1 1 .−

 (12)

Based on the graph of Fig. 3, the calculation of
0

1kβ + can be
classified into the following two cases.

3168

0 1 2 3 4 5 6 7
-10

-8

-6

-4

-2

0

2

4

6

8

x

y
=
x
a
n
d
 y
=
lo
g
(e
x
p
(x
)-
1
)

y=x

y=ln(exp(x)-1)

Small LUT Approximation
by y=xImpractically

Large LUT

x=Th x=Th2
y=

x
an

d
y=

lo
g(

ex
p(

x)
-1

)

x

Figure 3. Approximation of ln(exp(x)-1)

1)
0 4

, 1, 12 ln 2k k kβ β γ − −− + < or , 1, 14 ln 2kγ − − < .

In this case, as ()ln 1e • − is on the steep curve requiring a

large-sized lookup table, it is difficult to apply the reverse

calculation for
0

1kβ + . The conventional way of storing the
backward metrics values into a memory is applied instead of the
reverse calculation. During the backward processing, the value of

0

1kβ + is used to compute kβ metrics and stored in the memory.

The stored
0

1kβ + is retrieved from the memory when it is needed
to compute LLR values.

2)
0 4

, 1, 12 ln 2k k kβ β γ − −− + ≥ and , 1, 14 ln 2kγ − − ≥ .

In this case,
0

1kβ + metric is calculated only for computing kβ

metric but not stored into the memory. When
0

1kβ + metric is
required to compute the output LLR value, the reverse
calculation of equation (12) is used to approximate the value. If
the absolute value in this condition is between Th , a quantized
value of ln 2 , and 2Th , the logarithm is approximated by
referring a small lookup table, as shown in Fig. 3. If the absolute
value is equal or greater than 2Th , the logarithm value is
approximated by the value, i.e., ()ln 1xe x− ≈ .

For the remaining 1kβ + metrics, the conditions to decide the
cases are equal to the above conditions. Therefore, the case
checks required at a time index can be implemented with simple
arithmetic operations such as shift and addition. Since only
partial β metrics are stored into the metric memory during the
backward processing, we have to know whether the metrics are
in the memory or not during the forward processing of LLR
values. An approximation flag is used for a time index to record
whether approximation is possible at the time index. If the
corresponding approximation flag is set, a backward metric is
extracted by the reverse calculation. The number of
approximation flags is equal to the sliding window size, and each
flag has the bit width of the number of states at a time index.

Approximation
checking

kβ 1kβ +

kγ

Metric Memory

kβ 1kβ +

selective
writing

kγ

selective
reading

Reverse
calculation
if possible

1kγ − 1kγ +

β at the head
of a window

Approximation Flag

Figure 4. Proposed decoding procedure for backward

metrics

4. MEMORY OPTIMIZING
The proposed decoding procedure for backward metrics is shown
in Fig. 4. As the positions where the approximation can be
applied are random, the metric memory in the proposed decoding
procedure must be of the same size as the conventional scheme
that stores all the backward metrics. Furthermore, the
approximations are successful for some states, not for all the
states, even at a time index. Since a memory can store multiple
data in a memory word, the metric memory structure has to be
optimized by investigating the pattern of approximation
successes, the case that the two absolute values are equal or
greater than Th .
 The optimal memory structure depends on the number of states
and the butterfly pairs. The metric memory is partitioned into
several banks each of which can be accessed separately. The four
memory structures correspond to 1, 2, 4 and 8 banks, and the
memory accesses are grouped according to the number of banks.
 To determine the optimized structure, simulations are conducted
with the quantized scheme of [3]. In the simulations, Th and

2Th are set to 0.75 and 2.0, respectively, because the values
result in a negligible degradation of error correcting performance
that is with in the quantizing error. Fig. 5 shows the rate of
approximation success plotted for each memory structure, which
is obtained with 8 fixed iterations. As indicated in the Fig. 5,
more memory banks result in a higher rate of approximation
success. The rate of approximation success improves according
to the number of decoding iterations, but not rapidly. Table. 1
shows the powers of β metric memory consumed in the
conventional decoder and the proposed decoder, which are
obtained with a sliding window size of 32 and β metric
quantization to 9 bits.

5. EXPERIMENTAL RESULTS
The proposed log-MAP decoder was described in Verilog-HDL
and synthesized by a 0.25µm standard-cell library and compiled
SRAM memories. Design Compiler and DesignPower of
Synopsys were used for the synthesis and power estimation,
respectively. The proposed decoder is compared with a
conventional log-MAP decoder, as summarized in Table. 2.

3169

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

S N R(dB)

A
p
p
ro

x
im

a
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

(%
) 8 Partitioning

4 Partitioning

2 Partitioning

No Partitioning

8 banks

4 banks

2 banks

1 bank

Figure 5. Approximation success rate versus SNR(dB)

Note that the rate of the β memory access power to the total
power consumption is significantly reduced. In the proposed
structure, therefore, more attention is paid to the power and delay
optimization of logic modules. The SISO module of a
conventional decoder consists of 18705 gates, while the module
increases to 24850 gates in the proposed decoder. In the proposed
decoder, the metric memory is partitioned to 8-banked memories
with the same size and registers are inserted to hide the control
delay overhead. Both of the decoders achieves the critical delay
of 10.43ns. As a result, the proposed log-MAP decoder can be
operated at approximately 95MHz, which meets the W-CDMA
standard specification of 2Mbps. In the favorable situation
associated with high SNR and a large number of iterations, the
proposed decoding procedure consumes less power because of
the improved rate of approximation success, while the
conventional decoder consumes a fixed power.

TABLE 1. Power comparison of β memory access
measured at 1MHz for 2dB SNR and 8 iterations

Decoder
β memory

configuration

Power of
(read+write)
for 72 bits

Memory
access

rate

Memory
 power

Conventional (32x8x9) 818.7 µW 1.00 818.7 µW
(32x8x9) 818.7 µW 0.57 466.7 µW
(32x4x9) x 2 858.9 µW 0.29 249.1 µW
(32x2x9) x 4 939.4 µW 0.18 169.1 µW Proposed

(32x1x9) x 8 1100.2 µW 0.10 110.0 µW

TABLE 2. Power comparison of turbo decoders per MHz

Component Conventional
Log-MAP decoder

Proposed
Log-MAP decoder

Branch Memory 375.6 µW (21.7%) 375.6 µW (31.2%)

Beta Memory 818.7 µW (47.3%) 110.0 µW (9.1%)

SISO Module (+flags) 536.8 µW (31.0%) 719.8 µW (59.7%)

Total 1731.1 µW 1205.4 µW

Normalized Power 100% 69.6%

6. CONCLUSION
This paper has presented an approximate reverse calculation to
reduce the backward metric memory accesses required in turbo
decoding. We save only a small portion of the backward metrics,
not all the backward metrics, that cannot be computed by using
the proposed approximate reverse calculation. The other
backward metrics are not saved but recovered by using the
proposed reverse calculation when they are needed in the
forwarding process of LLR values. Experimental results show
that in the W-CDMA standard 90% of backward metric memory
accesses can be substituted by the reverse calculations if the
metric memory is organized suitably. At the expense of small
logic overhead for the decision, about 30% power consumption is
reduced in a MAP decoder.

7. ACKNOWLEDGEMENT

This research was supported in part by University IT Research
Center Project and by Korea Science Engineering Foundation
through MICROS center.

8. REFERENCES
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near

Shannon limit error correcting coding and decoding: Turbo
codes,” in Proc. ICC, pp. 1064-1070, May 1993.

[2] G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni,
“VLSI architectures for turbo-codes”, IEEE Trans. VLSI
Syst., vol. 7, Sep. 1999, pp. 369-379.

[3] Z. Wang, H. Suzuki, and K. K. Parhi, “VLSI
implementation issues of turbo decoder design for wireless
applications,” in Proc. IEEE SiPS, pp. 503-512, 1999.

[4] C. Schurgers, F. Catthoor, and M. Engels, “Memory
optimization of MAP turbo decoder algorithms,” IEEE
Trans. VLSI Syst., vol. 9, April 2001, pp. 305-312.

[5] D. Garrett, Bing Xu, and Chris Nicol, “Energy efficient
turbo decoding for 3G mobile”, in Proc. of IEEE ISLPED,
pp. 328-333, 2001.

[6] Y. Wu, W. J. Ebel, and B. D. Woerner, “Forward
computation of backward path metrics for MAP decoders,”
in Proc. of VTC, pp. 2257-2261, 2000.

[7] J. Kwak, S. M. Park, and K. Lee, “Reverse tracing of
forward state metric in log-MAP and MAX-log-MAP
decoders,” in Proc. of IEEE ISCAS, pp. 25-28, 2003.

[8] F. Catthoor et al., Custom Memory Management
Methodology: Exploration of Memory Organization for
Embedded Multimedia System Design. Norwell. MA:
Kluwer, 1998.

3170

