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ABSTRACT 
Due to the powerful error correcting performance, turbo codes 
have been adopted in many wireless communication standards. 
Although several low-power techniques have been proposed, 
power consumption is still a major issue to be solved in practical 
implementations. Since turbo decoding is classified as a 
memory-intensive algorithm, reducing memory accesses is 
crucial to achieve a low power design. To reduce the number of 
memory accesses for maximum a posteriori (MAP) decoding, 
this paper proposes an approximate reverse calculation of 
backward metrics which can be implemented with simple 
computational complexity. Simulation results show that the 
proposed method applied to W-CDMA standard reduces the 
access rate of the backward metric memory by 90% without 
degrading error correcting performance. A prototype turbo 
decoder based on the proposed reverse calculation achieves 30% 
power reduction compared to the conventional decoder. 

1. INTRODUCTION 
Since turbo coding was introduced by Berrou et al. in 1993 [1], it 
has been recognized as one of the most powerful forward error 
correction codes. Recently, turbo codes were accepted in many 
standardized third-generation mobile radio systems such as W-
CDMA and CDMA 2000, and various studies have focused on 
their practical implementations [2][3]. A turbo decoder consists 
of two decoding components of which operates iteratively to 
produce improved soft outputs by using the outputs of the other 
component. However, owing to its iterative decoding procedure 
and the requirement of frequent memory accesses, the turbo 
decoder suffers from long latency and high power consumption.  

As the turbo decoder is included in a class of highly memory-
intensive systems, a significant amount of power is consumed for 
memory accesses, resulting in a power bottleneck even though 
the decoder uses the sliding window processing to reduce the 
memory size greatly. It has been reported that the memory access 
power accounts for more than 50% of the entire power 
consumption [4]. A complex address generation algorithm for the 
interleaving is implemented on-the-fly instead of storing the 
interleaver addresses in a table [5]. The partial metric storage 
method proposed in [4] replaces some parts of the metric 
memory to a register file and computes the lost metrics 
redundantly. The weakness of this method is that the power 
consumed in the register file increases rapidly if many metric 
values are stored into a large-sized register file. In practice, 
therefore, the replacement is limited to up to a quarter of the 
memory size. 
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Figure 1. Structure of a turbo decoder 

Reverse calculation of state metrics is another efficient method to 
reduce memory accesses as reported in [6][7], which 
demonstrated that most metric memory accesses can be 
substituted by the reverse computation of forward or backward 
metrics. The rationale behind this approach is that the power 
need to access a memory is greater than that of the corresponding 
computation, which is usually valid for today’s deep submicron 
technology [8]. However, the quantization and singular matrix 
problems are not solved in [6], and the modifications introduced 
to solve these problems are not efficient in terms of real 
applications [7]. 

In this paper, we propose a new approximate reverse 
calculation for backward metrics. In the process of backward 
metrics calculation, about 10% of the calculated metrics 
corresponding to singular matrix calculations are written into a 
memory and the others are not saved because they can be 
recovered by the reverse calculation. When backward metrics are 
needed, they are read from memory or recovered by the proposed 
reverse calculation. 

2. LOG-MAP ALGORITHM 
The turbo decoding structure consists of two soft-input, soft-out 
(SISO) decoding modules which are separated by a pseudo-
random interleaver/deinterleaver. A conventional turbo decoder 
is shown in Fig. 1. Based on the MAP algorithm, the output for 
the thk  symbol is expressed in log-likelihood ratio (LLR) form 
as 
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, where ks  represents a state of the encoder at time k , and 

1k ks s +→  is the state transition from state ks  to state 1ks + , and 
0s  and 1s  denote the set of all the possible state transitions 

associated with message bit 0 and 1, respectively. 
To simplify the calculation of α  and β  metrics, the Jacobian 

logarithm is applied to produce the following equations (2) and 
(3), where A  is the set of states at time 1k −  that are connected 
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to state ks , and B  is the set of states at time 1k +  that are 

connected to state ks : 
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In the above equations, max*  is defined as 
 | |max* ( , ) ln( ) max( , ) ln(1 )x y y xx y e e x y e− −= + = + +   (4) 
and γ  metrics are represented as 

 [ ] [ ]1 1ln ( ) ( ) ln ( | ) ( )kk k k k k k k ks s s s P P uγ γ+ +→ = → = ⋅y x   (5) 

, where ku  is the input bit necessary to cause the transition from 

ks  to 1ks + , ( )kP u  is the a priori probability of ku , and kx  and 

ky  are the transmitted and received codewords associated with 
this transition. A specific expression for γ  metrics can be 
induced from the channel condition and the modulation scheme. 
Therefore, the LLR outputs can be obtained by 
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As indicated in equations (2) and (3), α  and β  metrics are 
recursively calculated in the forward and backward directions, 
and thus they are called forward and backward metrics, 
respectively. In a conventional way, as the directions of updating 
α  and β  metrics are opposite to each other, one of the two 
metrics is calculated and stored in a metric memory before 
computing the other metrics, and retrieved later when it is needed 
to compute the LLR output defined in equation (6). In this paper, 
we assume that β  metrics are calculated prior to α  metrics. 

 

3. APPROXIMATE REVERSE 
CALCULATION 

A turbo encoder with BPSK modulation can be represented by a 
trellis that has butterfly pairs when the first and the last shift 
registers are connected in both of the feedback and feed-forward 
polynomials. This is a valid condition for a good RSC encoder 
[6]. In W-CDMA, four butterfly pairs shown in Fig. 2 are 
constructed as 
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The first pair is represented as 
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Assuming BPSK modulation and the additive white Gaussian 
noise (AWGN) channel, the branch metric in log domain is 
expressed as 
 { }, , 0.5 ( )k d c s pd y La y cγ = × + +   (9) 
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Figure 2. Butterfly pairs in a W-CDMA turbo encoder 
trellis diagram 

, where k  is the time index, sy  is the channel observation of a 
systematic output, py  is the channel observation of a parity bit, 

La  is a priori information and c and d are the systematic and 
parity bit anticipated from the trellis diagram, respectively. Since 

, ,k d cγ  has the same value as , ,k d cγ − −− ,  the reverse calculation of 
(8) can be derived as 

 

0 4
, 1, 1 , 1, 1

, 1, 1 , 1, 1

4 0
, 1, 1 , 1, 1

, 1, 1 , 1, 1

0

1 2 2

1

1 2 2

ln

ln .

k k k k

k k

k k k k

k k

k

k

e e
e e

e e
e e

β γ β γ

γ γ

β γ β γ

γ γ

β

β

− − − −

− − − −

− − − −

− − − −

+ −

+ −

+ −

+ −

 − =
 − 
 − =
 − 

  (10) 

  The other butterfly pairs have the same structures as equation 
(10) except the superscripts. To achieve a practical 
implementation, equation (10) is simplified by using the 
following modification 
 ( ) ( )ln min( , ) ln 1 .x yx ye e x y e −− = + −   (11) 

 When 2x ye − < , the second term, ( )ln 1x ye − − , is on the steep 

curve as shown in Fig. 3, requiring an impractically large lookup 
table. On the other hand, when 2x ye − >> , the second term can 

be approximated to x y− . By applying equation (11), 
0

1kβ +  is 
rearranged as 
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Based on the graph of Fig. 3, the calculation of 
0

1kβ +  can be 
classified into the following two cases. 
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Figure 3. Approximation of ln(exp(x)-1) 

1) 
0 4

, 1, 12 ln 2k k kβ β γ − −− + <  or , 1, 14 ln 2kγ − − < . 

In this case, as ( )ln 1e • −  is on the steep curve requiring a 

large-sized lookup table, it is difficult to apply the reverse 

calculation for 
0

1kβ + . The conventional way of storing the 
backward metrics values into a memory is applied instead of the 
reverse calculation. During the backward processing, the value of 

0

1kβ +  is used to compute kβ  metrics and stored in the memory. 

The stored 
0

1kβ +  is retrieved from the memory when it is needed 
to compute LLR values. 

 

2) 
0 4

, 1, 12 ln 2k k kβ β γ − −− + ≥  and , 1, 14 ln 2kγ − − ≥ . 

In this case, 
0

1kβ +  metric is calculated only for computing kβ  

metric but not stored into the memory. When 
0

1kβ +  metric is 
required to compute the output LLR value, the reverse 
calculation of equation (12) is used to approximate the value. If 
the absolute value in this condition is between Th , a quantized 
value of ln 2 , and 2Th , the logarithm is approximated by 
referring a small lookup table, as shown in Fig. 3. If the absolute 
value is equal or greater than 2Th , the logarithm value is 
approximated by the value, i.e., ( )ln 1xe x− ≈ . 

For the remaining 1kβ +  metrics, the conditions to decide the 
cases are equal to the above conditions. Therefore, the case 
checks required at a time index can be implemented with simple 
arithmetic operations such as shift and addition. Since only 
partial β  metrics are stored into the metric memory during the 
backward processing, we have to know whether the metrics are 
in the memory or not during the forward processing of LLR 
values. An approximation flag is used for a time index to record 
whether approximation is possible at the time index. If the 
corresponding approximation flag is set, a backward metric is 
extracted by the reverse calculation. The number of 
approximation flags is equal to the sliding window size, and each 
flag has the bit width of the number of states at a time index. 
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Figure 4. Proposed decoding procedure for backward 

metrics 
 

4. MEMORY OPTIMIZING 
The proposed decoding procedure for backward metrics is shown 
in Fig. 4. As the positions where the approximation can be 
applied are random, the metric memory in the proposed decoding 
procedure must be of the same size as the conventional scheme 
that stores all the backward metrics. Furthermore, the 
approximations are successful for some states, not for all the 
states, even at a time index. Since a memory can store multiple 
data in a memory word, the metric memory structure has to be 
optimized by investigating the pattern of approximation 
successes, the case that the two absolute values are equal or 
greater than Th . 
  The optimal memory structure depends on the number of states 
and the butterfly pairs. The metric memory is partitioned into 
several banks each of which can be accessed separately. The four 
memory structures correspond to 1, 2, 4 and 8 banks, and the 
memory accesses are grouped according to the number of banks. 
  To determine the optimized structure, simulations are conducted 
with the quantized scheme of [3]. In the simulations, Th  and 

2Th  are set to 0.75 and 2.0, respectively, because the values 
result in a negligible degradation of error correcting performance 
that is with in the quantizing error. Fig. 5 shows the rate of 
approximation success plotted for each memory structure, which 
is obtained with 8 fixed iterations. As indicated in the Fig. 5, 
more memory banks result in a higher rate of approximation 
success. The rate of approximation success improves according 
to the number of decoding iterations, but not rapidly. Table. 1 
shows the powers of β  metric memory consumed in the 
conventional decoder and the proposed decoder, which are 
obtained with a sliding window size of 32 and β  metric 
quantization to 9 bits. 

5. EXPERIMENTAL RESULTS 
The proposed log-MAP decoder was described in Verilog-HDL 
and synthesized by a 0.25µm standard-cell library and compiled 
SRAM memories. Design Compiler and DesignPower of 
Synopsys were used for the synthesis and power estimation, 
respectively. The proposed decoder is compared with a 
conventional log-MAP decoder, as summarized in Table. 2.  
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Figure 5. Approximation success rate versus SNR(dB) 

Note that the rate of the β  memory access power to the total 
power consumption is significantly reduced. In the proposed 
structure, therefore, more attention is paid to the power and delay 
optimization of logic modules. The SISO module of a 
conventional decoder consists of 18705 gates, while the module 
increases to 24850 gates in the proposed decoder. In the proposed 
decoder, the metric memory is partitioned to 8-banked memories 
with the same size and registers are inserted to hide the control 
delay overhead. Both of the decoders achieves the critical delay 
of 10.43ns. As a result, the proposed log-MAP decoder can be 
operated at approximately 95MHz, which meets the W-CDMA 
standard specification of 2Mbps. In the favorable situation 
associated with high SNR and a large number of iterations, the 
proposed decoding procedure consumes less power because of 
the improved rate of approximation success, while the 
conventional decoder consumes a fixed power. 

TABLE 1. Power comparison of β  memory access 
measured at 1MHz for 2dB SNR and 8 iterations 

Decoder 
β  memory 

configuration 

Power of 
(read+write) 
for 72 bits 

Memory 
access 

rate 

Memory 
 power 

Conventional (32x8x9) 818.7 µW 1.00 818.7 µW 
(32x8x9) 818.7 µW 0.57 466.7 µW 
(32x4x9) x 2 858.9 µW 0.29 249.1 µW  
(32x2x9) x 4 939.4 µW 0.18 169.1 µW  Proposed 

(32x1x9) x 8 1100.2 µW 0.10 110.0 µW  

TABLE 2. Power comparison of turbo decoders per MHz 

Component Conventional 
Log-MAP decoder 

Proposed 
Log-MAP decoder 

Branch Memory 375.6 µW (21.7%) 375.6 µW (31.2%) 

Beta Memory 818.7 µW (47.3%) 110.0 µW (9.1%) 

SISO Module (+flags) 536.8 µW (31.0%) 719.8 µW (59.7%) 

Total 1731.1 µW 1205.4 µW 

Normalized Power 100% 69.6% 

 
 
 

 

6. CONCLUSION 
This paper has presented an approximate reverse calculation to 
reduce the backward metric memory accesses required in turbo 
decoding. We save only a small portion of the backward metrics, 
not all the backward metrics, that cannot be computed by using 
the proposed approximate reverse calculation. The other 
backward metrics are not saved but recovered by using the 
proposed reverse calculation when they are needed in the 
forwarding process of LLR values. Experimental results show 
that in the W-CDMA standard 90% of backward metric memory 
accesses can be substituted by the reverse calculations if the 
metric memory is organized suitably. At the expense of small 
logic overhead for the decision, about 30% power consumption is 
reduced in a MAP decoder. 
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