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Abstract

Sepsis, characterized by a systemic inflammatory state that is usually related to Gram-negative bacterial infection, is a
leading cause of death worldwide. Although the annual incidence of sepsis is still rising, the exact cause of Gram-negative
bacteria-associated sepsis is not clear. Outer membrane vesicles (OMVs), constitutively secreted from Gram-negative
bacteria, are nano-sized spherical bilayered proteolipids. Using a mouse model, we showed that intraperitoneal injection of
OMVs derived from intestinal Escherichia coli induced lethality. Furthermore, OMVs induced host responses which resemble
a clinically relevant condition like sepsis that was characterized by piloerection, eye exudates, hypothermia, tachypnea,
leukopenia, disseminated intravascular coagulation, dysfunction of the lungs, hypotension, and systemic induction of tumor
necrosis factor-a and interleukin-6. Our study revealed a previously unidentified causative microbial signal in the
pathogenesis of sepsis, suggesting OMVs as a new therapeutic target to prevent and/or treat severe sepsis caused by Gram-
negative bacterial infection.
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Introduction

Sepsis is the principal cause of death in hospital populations, and

its incidence has increased over the past 20 years [1,2,3]. The

syndrome of sepsis develops when the host immune response to

infection becomes excessive, which results in systemic inflammation

and multiple organ failure. The inflammatory system becomes

hyperactive, which involves infiltration of inflammatory cells and

increased production of proinflammatory mediators such as tumor

necrosis factor (TNF)-a and interleukin (IL)-6 [4,5,6]. Moreover, the

coagulation system is triggered through extreme activation of pla-

telets, which provokes disseminated intravascular coagulopathy [3].

Gram-negative enteric bacilli such as Escherichia coli (E. coli),

which are components of the normal human colonic flora, provoke

sepsis through robust activation of the host immune system [7,8,9].

Microbial components such as lipopolysaccharide (LPS) or outer

membrane proteins derived from Gram-negative bacteria can

hyperactivate the host immune response via binding to pattern-

recognition receptors [10,11]. Although these soluble factors

secreted from bacteria are believed to play a central role in the

pathogenesis of sepsis, the exact cause of sepsis by Gram-negative

bacteria is not clear.

Membrane vesicles represent nanovesicles that are secreted

from cells as a mechanism for cell-free intercellular communica-

tion, which has been observed from archaea, Gram-negative

bacteria, and Gram-positive bacteria to eukaryotic cells

[12,13,14,15,16,17,18]. A wide variety of Gram-negative bacteria,

including E. coli, constitutively secrete outer membrane vesicles

(OMVs), which are defined as spherical, bilayered proteolipids

with an average diameter of 20–200 nm [12,13,14,15]. Previous

biochemical and proteomic studies have revealed that bacterial

OMVs are composed of outer membrane proteins, LPS, outer

membrane lipids, periplasmic proteins, DNA, RNA, and other

factors associated with virulence [14,19,20,21]. Growing evidence

suggests that OMVs released by Gram-negative bacteria play

diverse roles in polyspecies communities by enhancing bacterial

survival, killing competing bacteria, transferring genetic materials

and proteins between bacterial cells, delivering toxins into host

cells, and modulating the immune response in host environments.

Gram-negative bacteria involved in sepsis, such as E. coli,

Salmonella and Pseudomonas secrete OMVs [7,14,22]. OMVs are

enriched with LPS and outer membrane proteins known as potent

immunostimulators [15,23], and have been considered as vaccine

candidates for preventing infection by Gram-negative bacteria

[24,25]. Furthermore, previous study has revealed that meningo-

cocci release many OMVs in the plasma of patients suffering from

severe sepsis [26], but the physiological role of OMVs and their

possible contribution to sepsis have not been defined clearly. In

this study, we showed that OMVs derived from intestinal E. coli

are causative microbial signals in the pathogenesis of systemic

inflammatory response syndrome (SIRS) and sepsis-induced

lethality, through the systemic induction of TNF-a and IL-6.
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Results and Discussion

CLP (cecal ligation and puncture) is considered the most

appropriate model of sepsis because it mimics the features of

clinical peritonitis, including polymicrobial infection [27]. One

notable feature of the CLP model is the presence of E. coli in the

peritoneal fluid [28]. Initially, we confirmed that E. coli extracted

from the peritoneal fluid in C57BL/6 mice after CLP, identified as

E. coli through 16S rRNA sequencing, elaborated OMVs on their

surface (Fig. 1A). The OMVs purified from the supernate of

cultured E. coli were characterized by their spherical bilayered

shape (Fig. 1B). In analysis by dynamic light scattering, the

majority of the purified vesicles (75.0%) had a diameter of 25–

50 nm (Fig. 1C).

We next investigated whether OMVs derived from E. coli, which

is a commensal Gram-negative bacterium that lives in the gut,

caused death in mice. OMVs were lethal when injected

intraperitoneally into mice; 95% of the mice injected with 25

and 50 mg of OMVs died within 36 h after the injection (Fig. 2).

The lethality was not a consequence of bacterial contamination

because the OMV preparation was found to be sterile in vitro, and

the peritoneum and serum of mice injected with OMVs did not

contain any live bacteria (data not shown). These findings clearly

indicate that OMVs derived from Gram-negative bacteria were

lethal in mice.

To investigate whether the OMV-induced lethality in mice was

related causally to SIRS, sublethal doses of OMVs (1, 2, and 5 mg)

were injected intraperitoneally three times, as shown in Fig. 3A, to

mimic the pathophysiological conditions under which OMVs are

secreted continuously. Although none of the doses induced

lethality, multiple injections of OMVs (5 mg) caused eye exudates

and piloerection (Fig. 3B). These symptoms were absent in groups

treated with 1 mg of OMVs and the group injected with 2 mg only

showed eye exudates (data not shown). Hence, we chose 5 mg of

OMVs for the rest of the experiments.

We found a decrease in body temperature (hypothermia) after

multiple injections of 5 mg of OMVs (Fig. 3C). Moreover, we also

observed an increase in respiratory rate (tachypnea) (Fig. 3D) and

a decrease in the number of leukocytes in peripheral blood

(leukopenia) (Fig. 3E). Sepsis is considered positive if two or more

of the SIRS criteria are met (e.g., hypothermia, tachypnea, or

leucopenia [1]); therefore, our observation clearly indicates that

OMVs derived from intestinal E. coli induced host responses which

resemble a clinically relevant condition like sepsis.

Severe sepsis occurs when a condition induced by sepsis is

associated with dysfunction of organs distant from the site of

infection [29,30]. In our study, we found that the intraperitoneally

injected OMVs (5 mg) upregulated the number of infiltrated

leukocytes in bronchoalveolar lavage fluid (Fig. 4A) and increased

lung tissue permeability (Fig. 4B). Other notable features of severe

sepsis have been linked to disseminated intravascular coagulation

or hypotension [31,32,33]. Platelets in peripheral blood decreased

(Fig. 4C) and D-dimer levels in plasma increased (Fig. 4D) after

OMV treatment, which indicated that OMVs caused disseminat-

ed intravascular coagulation. Moreover, OMV injection caused a

drop in blood pressure from 103.266.7 to 65.4610.5 mmHg

(Fig. 4E), which is the major determinant of lethality [31,32].

Severe sepsis is accompanied by systemic inflammation that

results from excessive release of cytokines into the systemic

circulation [34,35]. Serum levels of TNF-a and IL-6 were

markedly enhanced 6 h after multiple injections of 5 mg OMVs

(Fig. 5A). Increased levels of such cytokines were observed

similarly in bronchoalveolar lavage fluid, which indicated the

presence of SIRS in lung tissues (Fig. 5B). On the other hand,

other SIRS-associated mediators, such as IL-1b, IL-10, and

interferon (IFN)-c in serum and bronchoalveolar lavage fluid

showed only a slight increase compared with TNF-a and IL-6

levels. TNF-a and IL-6 are well-known to be important cytokines

in the pathogenesis of sepsis, and the level of these cytokines in

serum is a crucial indicator of sepsis [4,5,6,36].

OMVs are enriched with LPS and outer membrane proteins

known as potent immunostimulators [14,15,19]. As reported,

OMVs derived from E. coli were enriched with LPS and many

proteins including outer membrane proteins (Fig. 6A); OMVs

Figure 1. Characterization of intestinal E. coli-derived OMVs. A.
Electron micrographs of thin sections of E. coli, showing the formation
of OMVs (arrows) on the cell surface. Scale bars, 100 nm (left) and
25 nm (right). B. Transmission electron microscopy image of purified
OMVs. Scale bar, 100 nm. C. Size distribution of OMVs according to
diameter as determined by dynamic light scattering.
doi:10.1371/journal.pone.0011334.g001

Figure 2. Induction of lethality in mice by intestinal E. coli-
derived OMVs. Mice were administered intraperitoneally once with
200 ml PBS that contained 0, 15, 25, or 50 mg OMVs derived from E. coli.
Survival was monitored every 12 h for 5 days (n = 20; ***P,0.001,
compared to the PBS group).
doi:10.1371/journal.pone.0011334.g002

OMVs Induce SIRS
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harbor 75 ng of LPS per 100 ng of OMV proteins. We further

investigated the role of vesicle-associated LPS on the development

of OMV-induced lethality. When OMVs (25 mg) or LPS (40 mg,

about twice the amount of LPS than that in 25 mg OMVs) were

injected intraperitoneally once into mice, LPS alone showed no

lethality in contrast to OMVs injection (Fig. 6B). We also

observed that co-treatment of polymyxin B with OMVs (25 mg)

resulted in a decrease in OMV-induced lethality. Furthermore, the

intraperitoneally injected OMVs (25 mg) caused delayed and

reduced lethality in CD142/2 mice than in wild-type mice

(Fig. 6C). CD14 is the co-receptor of LPS [37]. Although further

studies should be addressed, our findings support the conclusion

that OMVs act as more powerful SIRS inducers than LPS alone,

and that both vesicular LPS and other vesicular components

including proteins should be crucial in the pathogenesis of sepsis-

induced lethality.

The present study showed that intraperitoneal injection of

OMVs derived from intestinal E. coli induced host responses which

resemble a clinically relevant condition like SIRS that was

characterized by piloerection, eye exudates, hypothermia, tachy-

pnea, leukopenia, disseminated intravascular coagulation, dys-

function of the lungs, hypotension, systemic induction of TNF-a
and IL-6, and lethality. Earlier in vitro studies showed that OMVs

derived from Pseudomomas delivered multiple secreted virulence

factors into the cytoplasm of airway epithelial cells through a lipid

raft-mediated pathway [38]. Based on these observations,

Bomberger et al. proposed the possibility that direct delivery of

bacterial proteins by OMVs could occur without bacteria, even at

a far distance. We observed that intraperitoneal injection of

OMVs induced lung dysfunction through systemic inflammation.

Thus, OMVs might be efficient enough to induce systemic

inflammation in distant organs, although bacteria themselves are

important for the development of sepsis at the first infection site.

Understanding the microbial factors in the pathogenesis of

severe sepsis and sepsis-induced lethality is essential in developing

rational strategies for prevention and treatment of sepsis caused by

bacterial infection. Although LPS/endotoxin is considered the

critical microbial signal in Gram-negative bacterial sepsis [10],

increasing evidence suggests that outer membrane proteins are

also key components in sepsis induction. Lipoproteins, which are

the most abundant outer membrane proteins, can cause lethal

shock in mice [11], and when combined with LPS, they can cause

sepsis synergistically [39]. In addition, previous evidence indicates

that OMVs derived from Neisseria meningitidis are more potent

inducers of inflammation than purified LPS [23]. Note that OMVs

are especially enriched with outer membrane proteins, including

OmpA, OmpF, and NmpC, which are potent immunostimulators

[19]. It is interesting to note that Gram-negative bacteria involved

in sepsis, such as E. coli, Salmonella and Pseudomonas secrete OMVs

[7,14,22].

In conclusion, we demonstrated that the OMVs derived from

Gram-negative bacteria are previously unidentified causative

microbial signals in the pathogenesis of severe sepsis and sepsis-

induced lethality, through the induction of proinflammatory

cytokines, particularly TNF-a and IL-6. Although further studies

should be issued, our findings could lead to a better understanding

of the pathogenesis of sepsis and sepsis-related diseases caused by

Gram-negative bacterial infection, and could have major impli-

Figure 3. Induction of SIRS signs in mice by intestinal E. coli-derived OMVs. A. Study protocol for investigation of SIRS. Sublethal dose of
OMVs (5 mg) derived from E. coli was injected intraperitoneally three times at 12-h intervals, and the mice were checked for SIRS index. All
experiments in (B–E) were performed following this scheme using 5 mg OMVs derived from E. coli. B. Piloerection (left) and eye exudates (right). C
and D. Body temperature (C) and respiratory rate (D) examined after OMVs injection (n = 5; **P,0.01 and ***P,0.001, compared to the PBS group).
E. Leukocyte number in blood collected from mice after OMV injection (n = 5; ***P,0.001, compared to the 0 h group).
doi:10.1371/journal.pone.0011334.g003
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cations for the development of diagnostic tools, vaccines, and

treatment of these syndromes.

Materials and Methods

Mice
We used 6–8 week old male wild-type mice and CD142/2 mice

of the C57BL/6 genetic background from the Jackson Laboratory.

Experimental protocols were approved by the Institutional Animal

Care and Use Committee at Pohang University of Science and

Technology, Pohang, Republic of Korea with approval number:

2009-01-0001.

Selection of intestinal E. coli after CLP
For CLP experiments, we anesthetized the mice, ligated the

cecum, punctured it once with an 18-gauge needle, and closed the

abdomen [40]. Forty hours after CLP, mice were anesthetized for

peritoneal lavage fluid collection. The fluid was cultured overnight

on Luria-Bertani agar plates at 37uC. A single colony was picked

and identified through 16S rRNA sequencing using primers 27f

and 1492r [41,42].

Preparation of OMVs from E. coli
Bacterial cultures grown in Luria-Bertani broth were pelleted

twice at 5,0006 g for 15 min. The supernatant fraction was filtered

through a 0.45 mm vacuum filter and was concentrated by ultra-

filtration with a QuixStand Benchtop System (Amersham Biosci-

ences) having a 100-kDa hollow fiber membrane (Amersham

Biosciences). Another filtration through a 0.22 mm vacuum filter

was done to remove any remaining cells. OMVs were prepared by

pelleting after the centrifugation in a 45 Ti rotor (Beckman

Instruments) at 150,0006 g for 3 h at 4uC. OMVs diluted in

phosphate-buffered saline (PBS) were stored at 280uC [19]. The

protein concentration of OMVs was assessed by the Bradford assay

(Bio-Rad Laboratories). The size distribution of OMVs was mea-

sured by dynamic light scattering using Zetasizer Nano ZS (Malvern

Instruments) and was analyzed by Dynamic V6 software [43].

Transmission electron microscopy
After fixation with 2.5% glutaraldehyde, cultured bacteria were

pelleted and post-fixed in 1% osmium tetroxide for 1 h,

dehydrated in a graded series of ethanol, and embedded in epoxy

resin. Thin sections were prepared using diamond knives

(Diatome) on an MTX microtome (RMC Boeckeler Instruments),

placed on 150-mesh coated copper grids (EMS) and stained with

3% uranyl acetate and lead citrate. For analysis of OMVs, OMVs

in PBS were placed on 400-mesh copper grids and stained with

2% uranyl acetate. Images were obtained using a JEM1011

microscope (JEOL) at an accelerating voltage of 100 kV.

Periplasm and outer membrane preparations
Periplasm and outer membrane were purified as described

previously [44]. Briefly, spheroplasts were made from E. coli by

lysozyme (600 mg/g cells) and 0.1 M EDTA treatment. The

spheroplasts resuspended in ice-cold 10 mM Tris–HCl (pH 8.0)

were sonicated and centrifuged at 8,0006 g for 5 min. Whole

membranes were pelleted from the supernates at 40,0006g for 1 h

for outer membrane preparation. The preparation was pelleted at

40,0006 g for 90 min after incubation in 0.5% sarkosyl (Sigma

Chemical Co.) at 25uC for 20 min. Final pellets were resuspended

in ice-cold 10 mM Tris–HCl (pH 8.0) and stored at 280uC. Protein

samples from whole-cell lysate, periplasm, outer membrane, and

OMVs were analyzed by sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (10% resolving gel), followed by gel staining with

Coomassie brilliant blue R-250 (Sigma Chemical Co.).

Investigation of septic signs in mice
Rectal temperature and systolic blood pressure were measured

using a Digital thermometer (Natume) and a computerized tail-

cuff system (Visitech Systems), respectively. Respiratory rate was

measured in conscious, unrestrained mice using noninvasive

whole-body plethysmography (Allmedicus). For leukocyte count-

Figure 4. Induction of lung dysfunction, disseminated intra-
vascular coagulation and hypotension in mice by intestinal E.
coli-derived OMVs. A and B. Bronchoalveolar lavage fluid and lung
organs were prepared from mice injected with OMVs derived from E.
coli following Fig. 3A. The total number of leukocytes in bronchoalve-
olar lavage fluid (A) and wet-to-dry ratio of the lungs (B) (n = 5;
*P,0.05, **P,0.01, and ***P,0.001, compared to the 0 h group).
C and D. Measurement of the number of platelets in peripheral blood
(C) and D-dimer levels in plasma (D) after OMV injection, as indicated in
Fig. 3A (n = 5; **P,0.01 and ***P,0.001, compared to the 0 h group). E.
Systolic blood pressure examined after OMV injection (n = 5; *P,0.05,
compared to the PBS group).
doi:10.1371/journal.pone.0011334.g004

OMVs Induce SIRS
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ing in blood, blood sample was obtained from anesthetized mice

by cardiac puncture and put into EDTA-tube. Following 6 min

incubation with 1% HCl, the number of cells was counted using

the light microscopy.

Evaluation of inflammatory index in mice
Serum and bronchoalveolar lavage fluid were collected from

mice after treatment of OMVs. Each sample was centrifuged, and

the supernates were stored at 280uC until cytokines evaluation.

The pelleted cells in bronchoalveolar lavage fluid were resuspended

in PBS and counted using the light microscopy. For cytokines

measurements, the cytokines present in the serum and bronchoal-

veolar lavage fluid were analyzed by ELISA (R&D Systems).

Wet-to-dry ratio of the lungs
After the OMVs-treated mice were killed, lungs were taken

from the mice and weighed. They were weighed again after 2 days

of drying at 55uC, followed by calculation of wet-to-dry ratio [45].

Figure 5. Onset of systemic inflammation by intestinal E. coli-derived OMVs. Measurement of cytokines levels in serum (A) and
bronchoalveolar lavage fluid (B) by ELISA after OMV injection, as indicated in Fig. 3A (n = 5; *P,0.05, **P,0.01, and ***P,0.001, compared to the
0 h group).
doi:10.1371/journal.pone.0011334.g005

Figure 6. Both vesicular LPS and other vesicular components are key factors in OMV-induced lethality. A. Coomassie-brilliant-blue-
staining of whole-cell lysates (WC), periplasmic proteins (PP), outer membrane proteins (OMP), and OMVs, each 10 mg. Molecular weight standards are
indicated on the left (kDa). Note that OMVs harbor 75 ng of LPS per 100 ng of OMV proteins. B. Survival curve of wild-type mice from a single
intraperitoneal injection of various samples as indicated (n = 10; *P,0.05 and ***P,0.001, compared with PBS group). C. Survival curve of wild-type
and CD142/2 mice after single injection of 25 mg OMVs (n = 10; *P,0.05 and ***P,0.001, compared to the PBS group).
doi:10.1371/journal.pone.0011334.g006

OMVs Induce SIRS
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Platelet and D-dimer measurements
Whole blood from heart was collected in EDTA-tube and

diluted 1:100 in 1% ammonium oxalate. Following the 10 min

incubation, the number of platelet was counted using the light

microscope. For D-dimer measurement, after treating the whole

blood with sodium citrate, D-dimer was quantified by Asser-

achrom D-dimer ELISA kit (Diagnostica Stago).

Statistical analyses
Survival curves were compared by the log-rank test. The rest of

the data were analyzed by Student’s t test using the GraphPad

Prism statistical program. P,0.05 was considered significant.

Results are expressed as means 6 SEM.
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