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Abstract
In this paper, we study the no-boundary wavefunction in scalar–tensor gravity
with various potentials for the non-minimally coupled scalar field. Our goal
is to calculate probabilities for the scalar field—and hence the effective
gravitational coupling and cosmological constant—to take specific values. Most
calculations are performed in the minisuperspace approximation, and we use a
saddle point approximation for the Euclidean action, which is then evaluated
numerically. We find that for potentials that have several minima, none of
them is substantially preferred by the quantum-mechanical probabilities. We
argue that the same is true for the stable and the runaway solution in the
case of a dilaton-type potential. Technically, this is due to the inclusion of
quantum-mechanical effects (fuzzy instantons). These results are in contrast to
the often-held view that vanishing gravitation or cosmological constants would
be exponentially preferred in quantum cosmology, and they may be relevant to
the cosmological constant problem and the dilaton stabilization problem.

PACS numbers: 98.80.Qc, 04.60.−m, 98.80.Cq, 04.50.Kd

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the big challenges of contemporary physics is to obtain a working theory of quantum
gravity. But even with such a theory in hand, there could presumably remain questions of
why the initial conditions of the gravitational field where what they were. Such questions may
even pertain to constants of nature and the like, in a theory of everything, including gravity.
It is therefore interesting to look for ways in which the initial conditions can be specified in a
natural way.
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With this in mind, in this paper, we study the quantum Brans–Dicke theory [9]. In this
theory, the gravitational coupling and cosmological constant can be dynamical: with a non-
trivial potential, one can typically find solutions of the classical equations in which the scalar �

carries out small oscillations around a minimum in the potential. Such a minimum can then be
thought of as determining a pair of effective constants (G,�). We note that the Brans–Dicke
theory with a potential can be obtained from string theory upon introduction of the dilaton
field [18, 19]. The dilaton field is then related to coupling parameters of all interactions in
string theory, and questions about the value of the gravitational coupling strength are thus
connected to the dilaton stabilization problem, i.e. the problem to explain why the field value
of the dilaton of our universe is located in such a stable location [24]. This is a problem that
has currently no commonly accepted answer.

Upon quantization of the theory, each quantum state gives probabilities for the values of
�, and these can, provided the state allows for a suitable classical interpretation, be translated
into probabilities for effective constants G and �. Such quantum states are obviously not
unique, but there are proposals to single out a unique natural state. Given such a proposal, one
obtains an a priori probability distribution for G and �.

For the canonical formulation of quantum gravity, the no-boundary (or Hartle–Hawking)
wavefunction �HH [1, 2, 3] is such a proposal for a natural initial state of the universe6.

Probabilities for the values of coupling constants have been discussed in the context of
quantum gravity for a long time. Early works (see, e.g., [25]) rely on the fact that in the instanton
approximation, the no-boundary wavefunction is dominated by the Euclidean de Sitter solution,
whose action comes out proportional to 1/�, and argue that a vanishing cosmological constant
is preferred by the resulting probabilities. A famous and detailed argument by Coleman [26]
has

Seff ∝ − 1

�G2
, (1)

where � is to be interpreted as an effective constant that denotes contributions from a path
integral over wormhole solutions, and the exponential of (minus) the effective action is to be
interpreted as a probability distribution for �. This result has also been interpreted as driving
the gravitational coupling to zero [27].

Coleman’s argument has been studied in the context of scalar–tensor theory [28], with the
same result for �, and the additional one that the whole theory would be driven toward the
Einstein gravity limit.

In this work, we are more moderate and more ambitious at the same time. We do
not consider the sum over topologies, and thus the coupling constants in our action will
not receive corrections. On the other hand, as described above, the scalar determines the
gravitational coupling, and introducing a potential, we obtain dynamical vacuum energy.
Using the no-boundary wavefunction, we obtain probability distributions for both. We work
in the minisuperspace setting [1, 2–4]. This has been considered previously for the Brans–
Dicke theory, e.g., in [10–17]. In [15, 17], various initial conditions for the wavefunction
are studied in regard to the consequences for the effective cosmological constant, using the
WKB approximation. The standard result of a minimal value for the cosmological constant
is obtained for the tunneling proposal, but interestingly, not necessarily in the no-boundary
proposal. What is new in our work is that we strive for a much better approximation to the no-

6 It should be noted that there are obvious questions regarding how to interpret amplitudes and probabilities calculated
from a wavefunction of the universe, such as �HH. There is an extensive literature about and a range of approaches to
this question, but we will not address any of these here. Rather, we will take a pragmatic approach, by just assuming
that the extreme cases (probabilities very large or small, similar or very different) do tell us something about the kind
of spacetimes that are excluded, or, respectively, described by a specific model.
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boundary wavefunction. We follow [7, 8] in allowing fuzzy (i.e., complex-valued) instantons
to contribute to the approximation, and we also use numerics to determine the solutions in the
fully dynamical regime. The classicality condition of [7, 8] also plays a pivotal role.

In section 2, we introduce the general procedure to obtain an approximation to the
no-boundary measure: minisuperspace approximation, saddle point approximation of the no-
boundary wavefunction and imposition of classicality conditions. In section 3, we apply the
method to scalar–tensor gravity and describe the numerical algorithm that we use to find
the relevant stationary points of the Euclidean action. In section 4, we report the results on the
no-boundary measure for two types of potentials: quadratic potentials and double- or multiple-
well potential. Finally, we will apply our results to the dilaton stabilization problem. We have
also included analytic results wherever we could. In section 5, we summarize and discuss our
findings.

2. The no-boundary proposal in quantum cosmology

2.1. Canonical quantum cosmology

By reducing the full action to homogeneous and isotropic spacetimes, and upon choosing an
appropriate time coordinate t, the line element can be written as

ds2 = N2(t) dt2 − hi j dxi dx j, (2)

where the positive-definite metric h only depends on finitely many parameters qI(t), due
to the symmetry assumptions. The corresponding action can typically be brought into the
minisuperspace form

S[N, q] = k
∫

dλ N

[
1

2
GAB

(
1

N

dqA

dλ

) (
1

N

dqB

dλ

)
− Ṽ (q̂)

]
, (3)

where q and N denote the configuration variables, k is the coupling constant, qI, I = 1, 2, . . . n,

denotes the metric degrees of freedom, as well as the degrees of freedom of the matter fields,
and Ṽ is a model-dependent effective potential. G is the DeWitt metric on minisuperspace.

Let us describe the canonical formulation based on equation (3). The canonical momenta
conjugate to q are given by pA = GABq̇B/N. N is non-dynamical. Its variation imposes an
additional constraint

C ≡ 1
2 GAB pA pB + Ṽ (q) = 0 (4)

on the variables {pA, qA}. The Hamiltonian H = NC vanishes identically on the constraint
hypersurface. While the kinematical phase space spanned by {pA, qA} is 2n dimensional, after
going to the constraint hypersurface C = 0 and identifying the gauge orbits generated by C,
we end up with a (2n − 2)-dimensional physical phase space. The system can be quantized in
the manner of Dirac, with the commutation relations

[qA, pB] = i�k δA
B I. (5)

Upon choosing a suitable ordering, the constraint C can be turned into an operator, and
physical states are required to satisfy the Wheeler–DeWitt equation C� = 0. Solutions to
this equation are typically not square integrable (zero is in the continuous spectrum of the
constraint operator), but if C is self-adjoint, it determines a scalar product on physical states.
In practice, it may be very difficult to obtain this scalar product explicitly.
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2.2. Classicality condition

Let us assume, for the discussion that follows, that the physical Hilbert space is a proper
subspace of H and consider a physical state �(q). Of particular interest are regions in the
configuration space over which � has a semi-classical form:

�(q) ≈ A(q)eiS(q), S(q) ∈ R, (6)

where the rate of change of S is much greater than that of A:

|∇IA(q)| � |∇IS(q)|, I = 1, . . . n. (7)

One way to see why a state of this form really describes almost classical behavior is the
following: the Wigner function W [�] of � of a state satisfying equations (6) and (7) is
approximately

W [�](q, p) ∼ |A(q)|2 δ(p − ∇S). (8)

This shows that for q in this region, � determines a probability and a momentum value
p = ∇S, which has a high likelihood. Let us consider a surface S in minisuperspace that is
intersected by each trajectory exactly once. Then, the probability distribution on this surface
in terms of q turns out to be (cf [7])

ρ(q) ≈ |A(q)|2 n · ∇S ≡ n · J, (9)

where n is the normal to S in minisuperspace and J is the conserved ‘Klein–Gordon’ current:

J = − i�

2
�∗↔

∇�. (10)

2.3. No-boundary wavefunction and steepest descent approximation

In the minisuperspace approximation, the no-boundary wavefunction takes the form

�HH(q) =
∫

NB(q)

Dq(·) e−SE[q(·)]/�, (11)

where NB(q) are symmetric Euclidean spacetime histories q(·) with a single boundary, the
geometry of which is described by q. We assume that the parametrization of the histories, or
equivalently, the lapse function, has been fixed appropriately. But even after gauge fixing, the
integral is not convergent because the Euclidean action is in general not positive. One way to
possibly cure this divergence is to regard the path integral in equation (11) as a contour integral
and deform the path away from real superspace, into the space of complex symmetric metrics.
Despite the huge simplification due to the minisuperspace approximation, the path integral
(equation (11)) is hard to treat exactly. Therefore, one uses the steepest descent approximation.
One obtains7

�HH(q) ≈
∑
ext

P(qext) e−SE[qext]/�, (12)

where qext is an extremizing Euclidean history satisfying the appropriate (no-)boundary
conditions, and P is given by 1 plus higher order terms, which depend on the functional
derivatives of the action. We will neglect the higher orders of P in what follows. For a single

7 Note that, here and in the following, SE[q] will sometimes be considered as a function of the endpoints of the
history q(·). We hope that this does not lead to confusion.
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extremum (in the application below we will see that the boundary conditions allow at most
two extrema), we then have8

�HH(q) ≈ e−SE[qext]/� = e−ReSE/� e−iImSE/�. (13)

Comparing with equation (6), we see that �HH is of the semiclassical form at q if

|∇IReS E| � |∇IImS E|. (14)

Let us finish by discussing a subtle point that is nevertheless important in applications: we
have said earlier that to give meaning to the path integral, we have to gauge-fix the lapse,
or equivalently, the time parameter used in the action. A priori, the time parameter is real,
but it is very convenient to also consider complex time parameters. In fact, if the Lagrange
function and the history are analytic in suitable regions, the action can be viewed as a contour
integral in the complex time plane and hence depends on the integration contour only through
its endpoints. Following [6, 7], we will make use of the freedom to chose the contour below.
Since we have written the no-boundary wavefunction in terms of the Euclidean action, we will
refer to a section of a contour that is parallel to the real axis as Euclidean, and to the one that
is parallel to the imaginary axis as Lorentzian.

3. The no-boundary measure in scalar–tensor gravity: formalism

In this section, we investigate the no-boundary measure for scalar–tensor gravity. Scalar–
tensor gravity is of interest not only in itself, but also as a dilaton gravity limit of string
theory. For us, it is interesting because it has dynamic gravitational coupling and vacuum
energy. Quantization of scalar–tensor gravity has certainly been considered before. In the
context of quantum cosmology, see, e.g., [10–17] and our discussion in the introduction. For
non-perturbative quantization, see, e.g., [20–23].

The first and simplest scalar–tensor theory is that of Brans and Dicke [9]:

S = 1

16π

∫ √−gd4x

(
�R − ωgαβ ∇α�∇β�

�

)
. (15)

Here, ω is a dimensionless coupling parameter, and Einstein gravity is restored in the ω → ∞
limit. We will refer to more general actions involving a non-minimally coupled scalar as scalar–
tensor theories, whereas we reserve the name Brans–Dicke theory to the theory with the above
action, possibly with the inclusion of a potential V (�). Matching current observations against
the Brans–Dicke theory without a potential requires ω greater than ∼40 000 [30]. Small values
for ω are however admissible for non-trivial potentials [31] and can be found in string-inspired
models [18, 19].

We briefly comment on possible scenarios that involve the Brans–Dicke theory. The most
important one is dilaton gravity obtained from string theory. The effective action of string
theory has the form [32]

S = 1

2λd−1
s

∫
dd+1x

√−ge−φ(R + (∇φ)2), (16)

with d being the space dimension, λs the length scale of string units, R the Ricci scalar, and φ

the dilaton field. The field redefinition �/(8πGd+1) ≡ exp(−φ)/λd−1
s turns the above action

into that of the Brans–Dicke theory with ω = −1.
In the first model of Randall and Sundrum [33], two branes have been employed to account

for the hierarchy problem. Due to the warp factor between two branes, one obtains a positive
tension brane and a negative tension brane in the anti de Sitter space background. According

8 In this paper, Re denotes the real part and Im denotes the imaginary part.
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to Garriga and Tanaka [34] each brane can be described by the Brans–Dicke theory in the
weak-field limit with

ω = 3
2 (e±s/l − 1), (17)

where s is the location of the negative tension brane along the fifth dimension, l = √−6/� is
the length scale of the anti de Sitter space and the sign ± denotes the sign of the tension. To
explain the hierarchy problem, we require s/l ∼ 35. We then obtain a sufficiently large value
of ω on the positive tension brane, while ω � −3/2 on the negative tension brane [34, 18]. In
principle, however, s/l can be chosen arbitrarily, and hence, one may infer that various ω near
−3/2 may be allowed by models of the brane world scenarios.

Finally, it is well known that f (R) gravity (for a recent review see [35]) can be reformulated
in terms of a Brans–Dicke field. The action is

S =
∫

dx4√−g

[
1

16π
f (R) + Lmatter

]
. (18)

Introducing an auxiliary field ψ , we change the gravity sector to

Sgravity = 1

16π

∫
dx4√−g[ f (ψ) + f ′(ψ)(R − ψ)] (19)

with the constraint ψ = R. If we define a new field � by � = f ′(ψ), we obtain

Sgravity = 1

16π

∫
dx4√−g [�R − V (�)] , (20)

where V (�) = − f (ψ) + ψ f ′(ψ). This is exactly the ω = 0 limit of the Brans–Dicke theory.
For our purposes, we begin from the action (equation (15)) by adding a potential V (�).

In this paper, we focus on the two types of potentials: quadratic potentials

V (�) = 1
2 M2(� − 1)2 = 1

2 M2�2, (21)

where � = � − 1, and double-well potentials

V (�) = �2

(∫ �

1

F(�̄)

�̄3
d�̄ + V0

)
, (22)

where we use an effective force function F(�) given by9

F(�) ≡ �V ′(�) − 2V (�) = A (� − �a) (� − �b)

(
� −

(
�a + �b

2
+ δ

))
. (24)

Here, A is a positive constant, �a and �b denote the field values of each vacuum and δ is a
free parameter that determines the location of the bump of the potential. For convenience, we
choose �a = 1 and let V (�a) = V0 be the true vacuum value. It is also useful to introduce the
effective potential

U (�) =
∫ �

1
F(�̄) d�̄ =

∫ �

1
(�̄V ′(�̄) − 2V (�̄)) d�̄, (25)

which is the one showing up in the field equation, ∇2� = U ′/(3 + 2ω).
In this paper, we will not explicitly perform calculations for a dilaton-type potential

resulting from the field redefinition in equation (16), but conduct a qualitative discussion of

9 Note that the potential in the Einstein frame V̂ is [19]

V̂ (�) =
∫ �

1

F(�̄)

�̄3
d�̄ + V0. (23)

The dynamical field �̂ in that frame is related to � by � = exp �̂[(16π)/(2ω + 3)]1/2. Therefore, the only effect is
to stretch the potential along the field direction, and this does not affect the vacuum energy of each field value.
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the stability issue based on an approximation by a double-well potential. For a quantitative
study of the dilaton-type potentials, see [36].

We write the symmetric line elements as10

ds2
L,E = ∓N2(t) dt2 + ρ2(t)(dχ2 + sin2 χ(dθ2 + sin2 θ dϕ2)) (26)

and obtain the symmetry-reduced actions

SL,E[ρ,�, N] = π

8

∫
dt N(±6ρ2�̇ρ̇N−2 ± 6�ρρ̇2N−2 − 6�ρ ∓ ωρ3�−1�̇2N−2 + ρ3V (�)).

(27)

To obtain the above result, we have added a suitable total derivative to keep the action
differentiable in the presence of boundaries. dt should be changed to dη for the Euclidean
case.

For the approximation of the no-boundary wavefunction, the on-shell Euclidean action
and both the Euclidean and Lorentzian equations of motion are needed. Using the Euclidean
Einstein equation for ρ and field equation for φ (with N = 1), one finds

S E = π

4

∫
dη(ρ3V − 6ρ�). (28)

The equations of motion (with N = 1) for the Euclidean time η and the Lorentzian time t
are as follows:

�̈ = − 3
ρ̇

ρ
�̇ ± 1

2ω + 3
(�V ′ − 2V ), (29)

ρ̈ = ±1 − ρ̇2

ρ
− ωρ

�̇2

6�2
∓ ρV ′

4ω + 6
∓ 2ωρ

6ω + 9

V

�
, (30)

where the upper signs are for Euclidean and the lower signs are for Lorentzian. Note that all
functions in the equations are complex in general (ρ = ρRe + iρIm and � = �Re + i�Im).
Therefore, effectively, there are four functions (ρRe, ρIm, �Re, �Im) and we need eight
initial conditions to fix a solution.

As we have already sketched the general procedure in section 2.1, we brief it here. The
symmetry-reduced Lorentzian action, equation (27), is of the form (3), where q = (ρ,�)

and N denotes the configuration variables, the coupling constant takes the value k = π/8, the
effective potential is given by Ṽ = 6ρ� − ρ3V , and

Gρρ = 12ρ�, G�ρ = Gρ� = 6ρ2, G�� = −2ω
ρ3

�
(31)

are the components of the DeWitt metric on minisuperspace. Thus, the system is equivalent
to a relativistic particle propagating in a two-dimensional space with the metric GAB under
the influence of a potential Ṽ . The determinant of the metric is −12(2ω + 3)ρ4, so GAB is
Lorentzian for ω > −3/2 and Euclidean for ω < −3/2.

The detailed expressions for the momenta and the Hamilton constraint C do not concern us
here, but let us make some remarks on the reduced phase space. As with all reparametrization-
invariant systems, time evolution is gauge evolution. While the kinematical phase space
spanned by {pA, qA} is four dimensional, after going to the constraint hypersurface C = 0 and
identifying the gauge orbits generated by C, we end up with a two-dimensional physical phase
space. Points in this space are simply the trajectories �(ρ) that can be obtained by solving
equation (4) to obtain qA(λ) and then eliminate λ which is possible at least locally.

10 For some more details regarding the following calculations, see, e.g., [37].
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Let us also give a parametrization of the space of trajectories �(ρ). Let us assume that the
particle is not a tachyon—the parametrization can also be easily adapted to the more general
case, but details then depend on the potential. We fix an initial value slice ρ = ρ0 = const. Note
that this slice is spatial with respect to G. Then, each solution of the dynamics will intersect
this slice once, and we obtain �(ρ0) and the two momenta pA(ρ0) at the intersection point.
We note that reparametrization of the solution changes the momenta by a constant factor, so
we can chose as parameters �(ρ0) and the ratio p1(ρ0)/p2(ρ0).

3.1. Steepest descent approximation

We remind the reader that to obtain the steepest descent approximation of the no-boundary
wavefunction (see section 2.3) at a superspace point ρ,�, we need to determine complex
solutions of the equations of motion that have ρ and � as boundary values and otherwise fulfill
the no-boundary condition. To specify the boundary value problem fully, and to compute the
action of such a solution, we need to fix a contour in the complex time plane. While this choice
is in principle largely arbitrary, there are practical reasons to chose one contour over the other.
To formulate the no-boundary condition, it is necessary to start the contour as Euclidean.
Moreover, the interpretation of the results is done most easily if the end of the contour is
Lorentzian.

The contour we chose for the practical evaluation consists of two components: an
Euclidean component from η = 0 to η = X and a Lorentzian component from η = X to
η = X + iY (or from t = 0 to t = Y with η = X + it). To implement the no-boundary
condition, we require that

ρ(0)Re = ρ(0)Im = 0, ρ̇(0)Re = 1, ρ̇(0)Im = 0, (32)

�̇(0)Re = �̇(0)Im = 0. (33)

At the turning point η = X , we have to match the Euclidean part of solutions (the so-called,
ρ, ρ̇, �, �̇) to the Lorentzian part of solutions (the so-called, ρ, ρ̇, �, �̇) of equations (29)
and (30) via the matching conditions:

ρ(t = 0) = ρ(η = X ), ρ̇(t = 0) = iρ̇(η = X ), (34)

�(t = 0) = �(η = X ), �̇(t = 0) = i�̇(η = X ), (35)

since d/dt = id/dη.
With a view to the calculation of the no-boundary wavefunction �(ρ,�), we note that

we havesix real conditions at η = 0, which leaves two real initial values to be specified.
Additionally, our contour has two parameters (X,Y ). This makes four real parameters that we
can shoot for at the boundary, i.e. precisely the number needed to tune the arguments of the
no-boundary wavefunction. We are, however, only interested in regions of configuration space
on which the wavefunction has the semiclassical form. This is what we discuss next.

3.2. Classicality condition

We are not interested in the value of the no-boundary wavefunction for arbitrary arguments,
but only in regions of configuration space on which the wavefunction has the semiclassical
form, equations (6) and (7). We note that the latter condition actually has two components, of
which one can be checked easily in our setup. The easy component is the one in the direction

8
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of time evolution: let q(t) ≡ (a(t),�(t)) be one of the no-boundary histories, evaluated on
part of the Lorentzian contour. With δq = dq/dt|t0 , we find

δqA∇ASE(q(t0)) = d

dt

∣∣∣∣
t0

∫ t

L(q(t ′), q̇(t ′)) dt ′ = L(q(t0), q̇(t0)), (36)

where L is the Lagrange function. Thus, given a history q(t), the component of ∇ASE in the
direction of δq is easy to determine. We also note that, by definition, in a classical region, qA

and δqA have to be real. In what follows, and in slight abuse of terminology, we will call a
no-boundary solution of the equations of motion, which satisfies the tangential component of
classicality, with δq being real, a classical history.

The orthogonal component of the classicality condition is harder to check, as it involves
finding no-boundary solutions of the equations of motion with nearby boundary conditions.

For the numerical evaluation, we split the initial value of � as

�(0) = �0 eiθ (37)

with �0 and θ being real. We fix the latter, and then, numerically scan the (θ, X ) space for
solutions that

(i) become classical at late times and
(ii) have ρIm, ρ̇Im, �Im and �̇

Im
approaching zero in the large t limit.

The parameter Y is held fixed (and sufficiently large), as it simply corresponds to time
evolution in the Lorentzian time.

3.3. Probabilities

We will denote the space of histories satisfying the no-boundary condition by H.11 We
eventually want to calculate the probability of histories satisfying certain (boundary-)
conditions. Let us say that we are interested in histories satisfying a certain condition A.
Then, we can define the subset by

HA = {h ∈ H | h has property A} (38)

of H. Given a set of classical histories HA, in principle, we have

PA =
∫

QA

|�HH(h, χ )|2n · ∇SDμ(h, χ ). (39)

The integration is over a subset QA of a spatial slice with the normal n in superspace. QA is
the set of points on this slice such that the wavefunction satisfies the classicality condition in
a way compatible with the condition A. S was defined in equation (6). μ is a certain measure
that can be obtained in principle from the inner product on the space of solutions to the
Wheeler–DeWitt equation and the slice. But it is very difficult to obtain in practice. Using
minisuperspace and steepest descent approximation, using �0 as a parameter on the slice, and
ignoring the details of the measure as well as the variation of n · ∇S, by assuming that both
are constant over the space of histories,

PA ≈ 1

Z

∫
QA

|exp(−SE[h�0 ])|2 d�0 = 1

Z

∫
QA

e−2ReSE[h�0 ] d�0 (40)

where Z is some normalization constant and h�0 is a history that initially has the scalar field
modulus equal to �0.

11 Note that histories that differ by time reparametrization are considered the same. Note also that while these
histories are regular in the Euclidean time as per the no-boundary conditions, they may well have singularities along
the real-time axis.
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If we have two conditions A and B, where A is an initial and B is a final condition, we will
use the notation HA→B for HA ∩ HB, and PA→B for the corresponding probability.

If SE[h�0 ] is slowly varying, and we compare two probabilities, then from equation (40)
we obtain

PA1

PA2

≈ exp(−2SE[h�1
] + 2SE[h�2

])

∫
QA1

d�0∫
QA2

d�0
, (41)

where �1 is a suitable initial condition, such that the history fulfills A1, and �2 is the same for
A2.

3.4. Searching algorithm

We have to find initial conditions, the initial phase angle θ and the turning point X for a given
initial field amplitude �0 to satisfy the classicality condition. To find classical histories for
a given �0, we formulate an optimization problem and solve it using the idea of the generic
algorithm. To realize this algorithm, first we define the objective function that quantifies
classicality. Second, using the optimization algorithm, we list and choose the best candidates
of initial conditions using the scores of the objective function. Third, we inversely check
whether the solutions of the initial conditions really have the classical properties what we
required.

We first define the standard objective function F�0 . To this end, note that the tangential
component of classicality can be reformulated as∣∣∣∣δqA(∇ASE)Re

δqA∇ASE

∣∣∣∣ ≡
∣∣∣∣LRe(q, q̇)

L(q, q̇)

∣∣∣∣ � 1, (42)

as long as δqA is real (see the discussion around equation (36)). Evaluating the left-hand side of
equation (42) in a single point given by a numerically determined function is not a very stable
procedure. Thus, in practice, we average it over some time interval, to define the objective
function:

F�0 [θ, X] ≡
∫ T2

T1

∣∣∣∣∣LRe
�0

[θ, X](t)

L�0 [θ, X](t)

∣∣∣∣∣ dt. (43)

Here, T1 and T2 define the Lorentzian time interval where the classicality will be tested and
need to be chosen sufficiently large. The reality of δqA is checked separately for minima of F .
Altogether, we obtain a criterion that is, for asymptotically large T , strictly equivalent to one
component of classicality. Other definitions for objective functions that single out classical
histories are undoubtedly possible. As sketched above, our definition was chosen for numerical
convenience12.

Then, we can define the relevant optimization problem: For given �0 and other constraints,
which values of initial parameters (θ, X ) minimizes F�0 ? Of course, we can find the optimal
solution by searching all possible values of (θ, X ). However, it takes too much time and
computation power, and hence, we need a better optimization algorithm.

In this paper, we use a simple version of the generic algorithm.

Initialization We first generate a set of initial condition pairs of a number N: {(θi, Xi)}
(i = 1, . . . , N), where we choose θ and X randomly. This set of (θi, Xi) constitutes the
first generation of candidate solutions.

12 We have run checks with other possible definitions for the objective functions. We found that the results generally
agree, although some differences are observed in the performance of the numerical search algorithm, in particular in
some more extreme regimes.
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Elite Then, we calculate F�0 for each (θi, Xi) by solving equations of motions numerically.
Among the parameters (θi, Xi), the one that has the smallest F�0 can be regarded as
the most classical solution in the first generation. As a subset of candidates, we select the
ne < N number of initial conditions that have the smallest F�0 . We call them elites of the
first generation.
Cross-over We cross-over the elite parameters to generate the nc (ne +nc < N) number of
new parameters. That is, we pick two parameters (θi, Xi) and (θ j, Xj) for arbitrary chosen
i and j from the elites and define a new parameter ((θi + θ j)/2, (Xi + Xj)/2); we repeat
this process nc times. They are adopted to examine the parameter space around the elite
group in more detail.
Mutation Finally, we generate the nm (ne + nc + nm = N) number of totally new
parameters, the so-called mutations, by choosing θ and X randomly. They ensure us that
the potential candidates of parameters are not lost systematically.
Evolution The set of elites, cross-overs and mutations constitutes the second generation.
Using the second generation of initial conditions, we calculate the objective function F�0 .
Then, we can choose new elites, cross-overs among the new elites and new mutations, and
define the third generation. We repeat this process to evolve generations until the values
θ and X of the elite group reaches to a steady state.

This generic algorithm finds the optimal parameter as the number of generations becomes
sufficiently large. However, it is possible that there is no classical solution for a given �0.
Therefore, we have to be careful whether the optimized value is really the classical solution
or not.

There are two main drawbacks of the generic algorithm in searching classical solutions.
One is that it can converge to a local minimum of F�0 rather than the global minimum, or
there can be two or more classical histories for a given �0. To resolve this problem, we
divided the searching region of (θ, X ) into several pieces and found the optimal parameters
separately. In this way, one can reduce the possibility of being captured by a local minimum.
The other drawback is that the result can sensitively depend on simulation parameters N, ne,
nc, nm and the definition of the objective function. N, ne, nc and nm should be sufficiently large
until the result does not sensitively depend on the choice of them. In our choice of F�0 , we
have to choose a proper time interval [T1, T2], where we will regard that a history becomes
classicalized around the time. Therefore, we have to carefully choose the time interval case by
case and check whether the results are not sensitively depending on the choice of parameters.

4. The no-boundary measure in scalar–tensor gravity: results

In this section, we study the no-boundary measure for two types of potentials: quadratic
potentials and the double-well/multiple-well potentials. The former is useful to obtain clues
about the physics near a generic local minimum, and the latter to compare the probabilities for
various values of gravitational couplings. In the case of the quadratic potential, we also have
some analytic results that we can compare to the numerical ones. Our results on these types
of potentials will give some intuition for the dilaton stabilization problem. First, we will make
some analytic considerations, and then, we will turn to the numerical investigation.

4.1. Analytic considerations regarding classical histories

For a first estimate, we regard that the potential is approximated near � = 1 by

V (�) � 1
2 M2(� − 1)2 + O((� − 1)3). (44)

11
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After we re-define the field � = � − 1, the on-shell Euclidean action becomes

S E = π

4

∫
dη

(
1

2
ρ3M2�2 − 6ρ� − 6ρ

)
. (45)

Therefore, compared to the Einstein case, we have an effective new term proportional to −ρ�.
The field equation is

�̈ = −3
ρ̇

ρ
�̇ + m2�, (46)

where we have defined m2 = M2/(2ω + 3). Thus, for a quadratic potential, the Brans–Dicke
field equation is the same as that for a standard scalar coupled to Einstein gravity. Thus, as
it was approximated in [5], we can compare the Euclidean action to the slowly rolling and
almost static-field limit.

In the static case, where � = �0 = const. with �0 determined by �0V ′(�0)−2V (�0) =
0, we have the exact solution

�(η) = �0, ρ(η) = 1

A
sin Aη, (47)

where

A2 =
[

1

4ω + 6
+ ω

6ω + 9

]
V ′ = 1

6
V ′. (48)

To satisfy no-boundary and classicality conditions, the turning point of the contour should be
at X = Aπ/2. Then, the real part of the action does not grow after the turning point and the
action becomes

S E = π

4

∫ X

0
dη(ρ3V (�0) − 6ρ�0) = − 3π�2

0

V (�0)
. (49)

Therefore, for small � limit, the Euclidean action negatively increases and hence � ∼ 1 will
be preferred.

Let us go even a little further: we have found one exact solution fulfilling classicality,
and it is a de Sitter-like solution, i.e. the trigonometric/exponential dependence of the scale
factor in the Euclidean/Lorentzian time, respectively. Thus, it is not unreasonable to guess
that other solutions contributing to the classical regime are perturbed de Sitter-like solutions.
To obtain these solutions, we need a field configuration allowing an inflating spacetime. The
well-known mechanisms are slow-roll inflation and false vacuum inflation. We are therefore
led to hypothesize that histories contributing to the classical regime are allowed under the
following conditions.

(i) A part of the potential satisfies the slow-roll conditions and the history experiences the
region of the potential (thus mimicking slow-roll inflation).

(ii) The field slows down and approaches a local maximum or minimum to experience an
effective de Sitter space (thus mimicking false vacuum inflation).

The slow-roll conditions for Einstein gravity are(
V̂ ′

V̂

)2

� 1,
V̂ ′′

V̂
� 1. (50)

In terms of the Brans–Dicke potential,(
16π

2ω + 3

) (
2 − �

V ′

V

)2

� 1,

(
16π

2ω + 3

)(
4 − 3�

V ′

V
+ �2 V ′′

V

)
� 1. (51)

From this consideration, one is led to the following hypotheses. First, assuming the local
extrema to be obtained for |�| ∼ O(1), both of the slow-roll conditions are difficult to
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satisfy, unless there is an inflection point13. Second, assuming V ∼ �n for large �, slow-roll
conditions hold only if n = 2. Therefore, if the potential shape is ‘runaway’ for large �, i.e.
n < 0, classicalization via slow-roll inflation may not happen. Certainly, in both these cases,
classical histories may still appear via false vacuum inflation.

For the quadratic potential, the conditions are

4

(
16π

2ω + 3

)(
1 − �

� − 1

)2

� 1, 2

(
16π

2ω + 3

) ((
�

� − 1

)2

− 3
�

� − 1
+ 2

)
� 1. (52)

Therefore, both of the conditions hold if and only if in the � � 1 limit. This suggests that
there are no classical histories that start near the bottom of the potential �0 ∼ 1. Such behavior
has been observed numerically in the Einstein case [7]. It also suggests that the range of initial
conditions that allow for classical histories gets larger as ω increases. Both of these conclusions
from our analytical considerations are borne out very well in the numerical results that we
present below.

4.2. Numerical results on the quadratic potential

We have numerically determined the classical histories contributing to the no-boundary
condition in the case of the quadratic potential. Our algorithm converges well and finds a
region of initial values for which there are classical histories. In this region, one solution per
initial value �0 = |�(η = 0)| is found. This is in contrast to the Einstein case, where there
are two solutions due to the symmetry of the potential. under φ �→ −φ. Figure 1 shows an
example of a classical solution in the Euclidean and the Lorentzian time, respectively.

In the Euclidean time, the real part of the scale factor ρ increases as a sine function, which
is typical of a de Sitter-like space in the Euclidean signature. The real part of the field � slowly
increases, since for the Euclidean signature, the potential is effectively inverted. After the
turning point, the real part of the scale factor increases exponentially as is typical when there
is positive vacuum energy. � rolls down to the equilibrium near � = 1, as expected. Other
classical histories show similar characteristics, as we had already anticipated by analytical
arguments.

We also note that the solution becomes real in the large t limit, as it should: it is instructive
to compare the real part and the imaginary part (top and middle of figure 2). After the turning
point (marked by the red circles), the imaginary parts quickly decrease to zero and are in
particular extremely small as compared to the real parts.

Also the behavior of the action (bottom of figure 2) is consistent with our expectations.
During the Euclidean time, the real part of the Euclidean action increases (to the negative
direction) and variation of the imaginary part is negligible. However, after the turning point,
the real part of the Euclidean action is almost constant, while the imaginary part of the action
increases (to the negative direction). This shows that for large t, the variation of the imaginary
part of the action is much bigger than that of the real part, and hence, the classicality condition
holds for the solution. The value of the Euclidean action at late time t can then be used to
determine the probability of such a history: P ∼ exp(−2SE).

In figure 3, we plot the Euclidean action as a function of |�(0)| for several values of ω. The
behavior is as anticipated in the previous section: as �0 increases, the probability decreases.
For a given ω, there is a critical �0 so that there are no classical histories with the initial value
less than the critical one, which confirms our discussion using the slow-roll conditions. As we
decrease ω, classical histories can be observed in the small �0 region. This is related to the

13 Possibly, an exceptional case can happen if the potential is ∼ �n+� and � is larger than 1; however, a cosmological
constant larger than 1 is unrealistic for our universe and we are not interested in such a case.
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Figure 1. The classical solution ρRe , ρIm , �Re , and �Im as the functions of η and t, for
ω = −1, M = 0.75 and �0 = 11. In this case, the search algorithm determined the turning time
to be X = 2.0734 and the initial phase angle to be θ = 5.680 17.

effective mass m2 = M2/(2ω + 3). If the effective mass increases, or ω � −1.5, then the field
rolls more quickly than in the small effective mass cases, and hence, it will be difficult to see
a classical history near the minimum.

4.3. Double-well potential

The double-well potential has two minima for �; this is very important for this work since it
gives a simple model that allows two different universes with different gravitational couplings.
After we gain intuition on the no-boundary measure in this case, we can apply it to the dilaton
potential, by shifting one minimum to infinity.

4.3.1. Analytic considerations. Let us consider a simple case

F(�) ≡ �V ′(�) − 2V (�) (53)

= A (� − �a) (� − �b)

(
� −

(
�a + �b

2
+ δ

))
, (54)

and A = 1, �a = 1, �b = 2, δ = −0.05 and V0 = 0.0001. We plot the potential in the Jordan
frame V (�) (upper left of figure 4), potential in the Einstein frame V̂ (�) (upper right of
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Figure 2. Plots for ρRe -ρIm , �Re -�Im , and SRe
E –SIm

E for ω = −1, M = 0.75 and �0 = 11.
Red circles denote the turning points.

Figure 3. The Euclidean action SE for quadratic potentials with ω = 0, −1,−1.4.

figure 4) and both of slow-roll conditions (lower left of figure 4). One can see that the slow-roll
conditions never become sufficiently small at the same time. Perhaps, if a saddle point and
an inflection point coincide in the Einstein frame, it may be possible to obtain a region where
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Figure 4. A typical double-well potential in the Jordan frame (upper left), Einstein frame (upper
right), and slow-roll conditions (equation (51), the second of them positive definite) of the potential
(lower left), for A = 1, �a = 1, �b = 2, δ = −0.05 and V0 = 0.0001. (Lower right) The regions
near the local minima (black regions) do not attract trajectories during the Euclidean evolution.
The local maximum (green region) is an attractor during the Euclidean time.

both slow-roll conditions hold. However, in this case, the solution would not be stable, and
hence, we will not consider this possibility further.

However, even though slow-roll conditions do not hold, if initial conditions of the field
are finely tuned so that if the field slows down and approaches a local extremum, there may
be a possibility of seeing a classical history. One trivial example of this is the solution in
equation (47). Therefore, one may guess that such a real solution can happen near the solution
of �V ′(�) − 2V (�) = 0 (local minimum or local maximum of the potential in the Einstein
frame).

However, if the solution is a minimum, this cannot work. If the field does not start
exactly at the minimum, it will roll to the upper region of the potential during the Euclidean
time evolution. Only a local maximum is an attractor during the Euclidean time (lower right
of figure 4) and may thus provide for a continuum of classical histories via false vacuum
inflation. Thus, there is some hope to see classical solutions

(i) precisely at a local minimum,
(ii) precisely at a local maximum and

(iii) for initial conditions near the local maximum.

Now let us define subsets of all histories H by imposing the initial conditions: HA1 , HA2

and HA3 , such that

HA1 = {h | �0 = �m}, (55)

HA2 = {h | �0 = �M}, (56)
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HA3 = {
h | �0 > �M − ��(1) or �0 < �M + ��(2)

}
, (57)

where �m is a local minimum, �M is a local maximum, and ��(1), ��(2) > 0 are bounds to
allow classical histories around the local maximum. We know that around the local minimum
or maximum, the Euclidean action will be approximately equation (49), and hence

PA1

PA3

� exp

(
6π�2

m

V (�m)
− 6π�2

M

V (�M )

)
μ

(
HA1

)
μ

(
HA3

) , (58)

PA2

PA3

� μ
(
HA2

)
μ

(
HA3

) , (59)

where μ is given by the Lebesgue in the space of initial conditions. Therefore, probabilities
will be dominated by PA3 , since sets H1 and H2 are measure-zero sets.

Now let us focus on the case (iii). Then, there may be two possibilities: after the history
has become real-valued, it can roll down to left or right in the double-well potential. Let us
impose the final conditions BL and BR and define subsets HBL and HBR by

HBL = {h | �(λ = 1) = left side}, (60)

HBR = {h | �(λ = 1) = right side}, (61)

where λ = 1 means a sufficiently large time along the Lorentzian direction. If the potential
near the local maximum is symmetric, then, for given �0, both histories will be allowed. In
other words, after the field slowed down at the top of the hill, if the velocity of the field is
almost zero, then there will be no principle to push the field left or right. Therefore, as long as
the potential is approximately symmetric near the local maximum, if a left-rolling solution is
allowed, then there will be a right-rolling solution, too. In other words,

PA3→BL

PA3→BR

� μ
(
HA3→BL

)
μ

(
HA3→BR

) �
∫

h∈HA3→BL
d�0∫

h∈HA3→BR
d�0

� O(1), (62)

and there is no exponential contribution to determine left or right.

4.3.2. Numerical confirmations. We have numerically confirmed these theoretical assertions.
For convenience, we choose parameters to almost symmetric near the local maximum: A = 1,
�a = 1, �b = 2, δ = −0.05 and V0 = 0.0001. This potential has the local minima around
� = 1 and � = 2 and the local maximum is � � 1.45. Figure 5 is an example of the
left-rolling solutions and figure 6 is an example of the right-rolling solutions. In both cases, we
fixed �0 = 1.4. For the right-rolling case, since the final state has sufficient vacuum energy,
one can see the exponentially increasing ρ; therefore, future evolutions of left-rolling and
right-rolling cases are quite different. This implies that for a given initial field amplitude �0,
there are two physically different solutions (with different θ and X). Therefore, after we fix
both the initial and the final conditions, �0 points out a unique history. In both cases, along
the Euclidean time, the imaginary parts are definitely suppressed.

As we vary �0, we can classify left-rolling solutions and right-rolling solutions and
estimate Euclidean actions. The allowed region for left-rolling solutions is �0 � 1.8 and the
allowed region for right-rolling solutions is approximately �0 � 1.4 (figure 7). Moreover,
there is no meaningful difference on actions between various �0 and left- or right-rolling
processes. The values are approximately −1349, where −3π1.452/V (1.45) � −1348.9. This
confirms our assertions on the probability (up to the overall normalization factor Z):

PA3→B � exp
6π�2

M

V (�M )

∫
h∈HA3→B

d�0 (63)
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Figure 5. An example of left-rolling solution ρRe , ρIm , �Re and �Im as the functions of η and
t, for A = 1, �a = 1, �b = 2, δ = −0.05, V0 = 0.0001 and �0 = 1.4.

and

PA3→BL

PA3→BR

�
∫

h∈HA3→BL
d�0∫

h∈HA3→BR
d�0

� O(1), (64)

where �M is a local maximum in the Einstein frame.
In summary, we find in all the potentials that we have investigated numerically that if

there is a local maximum between two local minima, then the probability is determined by the
local maximum.

4.3.3. Generalization to the multiple-well potential. Now let us generalize for multiple-well
cases. If we see a triple-well potential, then there are two places with the nonzero measure
where classical solutions can be obtained: let us call �A1 and �A2 (figure 8). Then, there
can be three final conditions: ends at the first minimum H1, ends at the second minimum H2

and ends at the third minimum H3. Histories for H1 should begin from A1, and each history
contributes the probability approximately exp(6π�2

A1
/V (�A1 )). Histories for H2 can begin

from A1 or A2 and each history contributes the probability approximately exp(6π�2
A1

/V (�A1 ))

or exp(6π�2
A2

/V (�A2 )). Finally, histories for H3 can begin from A2 and each histories
contribute approximately exp(6π�2

A2
/V (�A2 )). Now, we write probabilities by (we ignore the
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Figure 6. An example of right-rolling solution ρRe , ρIm , �Re and �Im as the functions of η

and t, for A = 1, �a = 1, �b = 2, δ = −0.05, V0 = 0.0001 and �0 = 1.4.

Figure 7. The Euclidean action SE for the double-well potential: A = 1, �a = 1, �b = 2,
δ = −0.05 and V0 = 0.0001.

prefactor 1/Z)

PH1 � exp
6π�2

A1

V
(
�A1

) ∫
h∈HA1→B1L

d�0, (65)
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Figure 8. Multiple-well potential.

Figure 9. A typical dilaton-type potential and an extension for a thought experiment.

PH2 � exp
6π�2

A1

V
(
�A1

) ∫
h∈HA1→B1R

d�0 + exp
6π�2

A2

V
(
�A2

) ∫
h∈HA2→B2L

d�0, (66)

PH3 � exp
6π�2

A2

V
(
�A2

) ∫
h∈HA2→B2R

d�0. (67)

This argument can be generalized for other multiple-well potentials.

4.4. Stabilization problem: dilaton-type potential

Let us think a typical dilaton-type potential (figure 9). In many models of the dilaton potential,
there is an unstable direction in the large � limit. Let us try to consider this as an extreme
limit of a double-well potential, as in figure 9. Let us call the minima �m1 and �m∞ . As we
have seen previously, histories in which � is precisely located in one of the minima will lead
to the classical points of the no-boundary wavefunction with modulus squared proportional to
exp 6π�2

m/V (�m). Therefore, if we compare just these two points, the right minimum �m∞ is
much more preferred. We can think that a dilaton potential is an extreme limit of �m∞ → ∞.
In this point of view, Euclidean quantum cosmology seems to state that the dilaton field should
be destabilized and all coupling constants of nature should be zero.
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However, as we discussed in the previous section, other histories also contribute classical
points, in particular the fuzzy instantons. For the potential in figure 9, it is also difficult to find a
region that allows slow-roll conditions to be satisfied, except inflection points. Thus, there can
be classical solutions around the local minima or maxima; those starting near but not precisely
at the local minimum will evolve toward the maximum and obtain the main contribution to
the Euclidean action there. Furthermore, there will be continuously many classical histories
starting around the local maximum of the potential. Therefore, as in equations (58) and (59),
the local minima will be excluded.

For obvious practical reasons, we cannot directly work with the � = ∞ solution itself.
Numerically, we only see runaway solutions. However, as we numerically observed, all
runaway solutions should experience false vacuum inflation around the local maximum, and
hence, the probability cannot be exp ∞.

Then, are the stable histories preferred? We have to compare the left-rolling (stable)
histories and the right-rolling (unstable) histories. As we discussed above, our numerical
results and the understanding of the behavior of the histories contributing to the saddle point
approximation that we have developed in the previous sections show that the probabilities for
a classical universe with stabilized and one with non-stabilized couplings should be of similar
magnitude. At very least, it appears that the stabilized universe would not be exponentially
suppressed, unless the potentially would somehow be extremely (‘exponentially’) asymmetric.

In conclusion, we can say on the dilaton stabilization problem using the no-boundary
measure that

(i) we disagree with the assertion that the probability of a universe corresponding to the
runaway solution is 1 and

(ii) rather, under the approximation we are working in, probabilities for stabilization and
de-stabilization are of similar order.

Therefore, the no-boundary proposal seems to be able to contribute to the solution of the
dilaton stabilization problem.

5. Discussion

In this paper, we investigated the no-boundary measure in scalar–tensor gravity in the context
of Euclidean quantum cosmology. In particular, we were interested in trying to explain why
we observe a non-vanishing gravitational coupling. This is related to the dilaton stabilization
problem, to explain why the dilaton field is located in a stable vacuum of a potential.

To get a handle on this problem, we worked with the Brans–Dicke field with various
potentials. As was found in previous work, we have seen that it is important to not only
consider real-field configurations in the saddle point approximation to the wavefunction,
but also the complex ones, the fuzzy instantons. In our case, we see that fuzzy instantons
contributing to the probability for classical universes are allowed in the following two regions
in a potential: with the scalar at a local minimum or near a local maximum. The instantons
at the minimum is in fact not fuzzy, but they are of measure zero as compared to the other
fuzzy instantons. Therefore, even though the former have large negative Euclidean action,
their probability will be zero.

Thus, histories contributing to the probability for a classical universe should slow down
and spend time around a local maximum, experience false-vacuum inflation, and then turn to
the Lorentzian time. This is indeed a new classicalization mechanism that is different from the
previous work of Hartle, Hawking and Hertog.
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The next question is whether we will roll down to left or to right. At the level of precision
and approximation that we are working at, we cannot decide. Probabilities of two possibilities
have similar order, unless the potential is extraordinarily asymmetric. Therefore, the no-
boundary measure can partly explain the stabilization of some coupling constants of nature.
But it does not seem to assign probability-zero universes in which they run away. This is
perhaps a point where anthropic reasoning may be employed.

There are some issues that we have not studied, but which may nevertheless be relevant
to the questions we considered.

• In this work, we did not include volume weighting, since we did not include an inflaton
field. (Of course, the dilaton field can role as an inflaton field, but it may not necessarily be
true.) If we include the inflaton field, the classicalization process could be changed, since
there is another field that induces inflation. The inclusion of volume weighting and/or an
additional scalar may change the results.

• If there is a correction term that affects histories near a local minimum so that it breaks
symmetry around the local minimum, then the region near the local minimum could admit
a continuous spectrum of histories. Then, if vacuum energy of such a local minimum is
sufficiently smaller than other positions, it may fully explain the stabilization of the dilaton
field.

• From our numerical results, it seems that our intuition, coming from the dynamics of
real fields, serves us well for the qualitative understanding of the dynamics of the fuzzy
instantons. It should however be kept in mind that these are complex-field configurations.
In particular, they are sensitive to the analytic continuation of the potential. It is thus not
inconceivable that different potentials, with a similar shape on the real sub-sector of the
theory, will lead to different results.

In addition, although our study is on scalar–tensor gravity, our conclusion is qualitatively
relevant also for the no-boundary measure of Einstein gravity minimally coupled to a scalar
field. Due to their choice of the potential, Hartle et al [6, 7] only considered slow-roll inflation,
concluded that the bottom-up probabilities do not favor larger amounts of inflation, and then
appealed to volume weighting to deal with this problem [30]. Our work shows, however, that
there is a second mechanism to generate classical histories, provided the potential has a more
complex shape. They can be formed around the local maximum via false vacuum inflation. In
this case, the bottom-up probability does not disfavor the top of the hill of the potential, and
it may be possible to explain large amounts of inflation from bottom-up probabilities in this
way.
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