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Abstract: A mobile asset with a sensor node in a mobile asset tracking system moves 

around a monitoring area, leaves it, and then returns to the region repeatedly. The system 

monitors the in/out status of the mobile asset. Due to the continuous movement of the 

mobile asset, the system may generate an error for the in/out status of the mobile asset. 

When the mobile asset is inside the region, the system might determine that it is outside, or 

vice versa. In this paper, we propose a method to detect and correct the incorrect in/out 

status of the mobile asset. To solve this problem, our approach uses data about the 

connection state transition and the battery lifetime of the mobile node attached to the mobile 

asset. The connection state transition is used to classify the mobile node as normal or 

abnormal. The battery lifetime is used to predict a valid working period for the mobile node. 

We evaluate our method using real data generated by a medical asset tracking system. The 

experimental results show that our method, by using the estimated battery life time or by 

using the invalid connection state, can detect and correct most cases of incorrect in/out 

statuses generated by the conventional approach. 

Keywords: wireless sensor networks; mobile asset tracking; mobile node; status 

monitoring; node failure detection 
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1. Introduction  

The development of information technology has created a demand for small sized computing 

devices. These are placed at specific positions, capture data around them, communicate with 

neighbors, and transmit the data to others via wireless communications [1]. They are called sensor 

nodes and collectively they form WSNs (Wireless Sensor Networks). Each node becomes a sensing 

device as well as a routing device in sensor networks.  

Many valuable applications using WSNs have been implemented in recent years. These applications 

are categorized into two groups, according to the type of sensor node that the applications use. There 

are stationary sensor networks and mobile sensor networks. Stationary sensor networks consist of a 

number of static nodes. In such a network, the sensor nodes are placed at different locations to monitor 

environmental conditions; the positions of the sensor nodes rarely change. Such systems are applied to 

structural health monitoring [2,3], environmental monitoring [4,5] building management [6], static 

asset management [7], traffic monitoring [8], and factory automation [9]. Mobile sensor networks, on 

the other hand, contain one or more mobile sensor nodes. In such a network, each mobile node is 

attached to a mobile object. The movement and the current position of the object are monitored in real 

time. This system enables users to find and count mobile objects quickly, and it can be applied to mobile 

asset tracking [10,11], human monitoring [12], and medical equipment monitoring [13].  

The mobile asset tracking system monitors movements and locations of mobile assets within a 

monitoring area by attaching a mobile node to a mobile asset. The position of the mobile node is 

considered as that of the mobile asset. The mobile asset can move around within the monitoring area, 

stay in another place after leaving that area, and then return to the original area. The continuous 

movement of the mobile asset changes the configurations of WSNs by changing its parent node, causes 

the asset to disconnect from the network, and makes the system generate incorrect results. One of these 

changes of WSNs is a possible error in the in/out status of the mobile asset. The system might 

determine that the position of the mobile asset is outside the area even when the asset is within the 

area, or vice versa. The incorrect in/out status of the mobile asset is caused by node failure. However, 

the above works that use mobile sensor networks do not describe the effect of node failure while the 

applications are working; rather, they assume that all nodes are reliable. For example, the mobile asset 

tracking system described in [10] is used to monitor mobile medical equipment in the emergency room 

of Incheon Gil Medical Center in Korea. The emergency room has a lot of medical equipment 

necessary to provide medical treatment to patients with various illnesses and injuries according to the 

patient’s condition. In real time, the system monitors several mobile medical assets with mobile nodes 

and reports their positions to nurses. The system allows the nurses to rapidly generate a report that 

details how many assets are in the emergency room and how many assets have left the area, as well as 

where the mobile assets are. However, a few nurses have reported that the number of inside and 

outside assets determined by the system were different in real situations while the system was working.  

There has been some research on controlling false status, as will be discussed in Section 2. These 

projects have tried to detect node failures using observer nodes that monitor whether target nodes 

perform their functions or not. The methods are suitable for static nodes because the relationship 

between observer nodes and target nodes is constant and they exchange monitoring messages 
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periodically. However, such a method cannot be applied to mobile nodes because the relationship 

between the observer and the target nodes changes continuously when mobile nodes move. 

In this paper, we investigate the reason for the generation of false reports in the mobile asset 

tracking system described in [10] and determine that they are generated by incorrect in/out status 

reports of the mobile nodes attached to the mobile medical assets. This paper describes how to 

recognize and correct the incorrect in/out status of a mobile node on an application server that is 

located outside the WSN. We detect two failures that cause incorrect in/out status of the mobile node: 

abnormal connection state and exhausted battery. We use connection state and battery lifetime of the 

mobile node to detect the failures. When the mobile node moves, its connection state changes and can 

be classified into a state of joined, left, or transitive. We detect the abnormal connection state of the 

mobile node if it stays in the transitive state for more than a certain amount of time. Each mobile node 

has a battery that has a limited lifetime. Mobile nodes consume different amounts of energy according 

to their in/out statuses. We estimate the energy consumption of the battery and detect abnormal nodes 

from the exhausted battery. Detecting the incorrect in/out status is very important in the mobile asset 

tracking system. False in/out status determination turns users away from the system because they feel 

they cannot trust its reliability. Incorrect status should be identified and corrected to increase system 

reliability as well as customer satisfaction. In summary, the contributions of this paper are as follows: 

 We develop a framework to detect and correct the incorrect in/out status of a mobile node 

in a mobile asset tracking system based on the properties of mobile nodes. This method is 

applicable to many mobile asset tracking applications. To our knowledge, this is the first 

incorrect in/out status detection technique for mobile asset tracking systems. 

 We propose two state classifiers to control the incorrect in status of a mobile node. These 

are network based and frequency based classifiers that categorize mobile nodes as either 

a normal node with a normal connection state or an abnormal node with an abnormal 

connection state. 

 We propose a battery lifetime estimator to control the incorrect out status of a mobile 

node. This method estimates battery lifetime and categorizes nodes as either a normal 

node with a good battery level or an abnormal node with an exhausted battery. 

 We perform experiments with real data sets using both state classifiers and battery 

lifetime estimation. The experiments show that our approach not only detects incorrect 

in/out status but also corrects it accurately. 

The rest of the paper is organized as follows. Section 2 presents the related work and background. 

Section 3 presents the system architecture of the mobile asset tracking system and describes its 

components. Section 4 explains our methods for tackling the problem. Section 5 describes our 

experimental environment and compares the proposed method with an existing method. Finally, 

Section 6 concludes the paper. 

2. Related Work 

This paper studies the incorrect in/out statuses of mobile assets caused by unexpected node failures. 

Most previous works focus on detecting static node failures. This paper is to look at detecting mobile 

node failures and linking those failures to the incorrect in/out statuses of mobile assets for mobile asset 
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tracking systems. In this section, we will briefly review some work on node failure detection methods 

in sensor networks. 

Chen et al. [14] propose a distributed fault detection method that determines the status of a node by 

testing the difference of the sensed data produced mutually by neighbor nodes. When two neighbor 

nodes receive sensed data transmitted by each node, each node calculates the difference between the 

received data and its own sensed data. If the difference exceeds a certain threshold value, one node 

determines that the other node is a failure node. However, this method cannot be applied to mobile 

nodes. Since mobile nodes move continuously, the mobile nodes cannot be used to determine 

individual node failure even when the difference of data among neighbor nodes exceeds the threshold. 

Ramanathan et al. [15] propose Sympathy, a tool for detecting and debugging failures in sensor 

networks. Sympathy runs at each node, which transmits monitored traffic and metrics traffic. The 

former is produced by the sensor node in the sensor network and the latter is produced by Sympathy. 

Sympathy monitors the traffic to detect failure nodes and determine the source of the failure. When a 

node generates less monitored traffic than a certain threshold, Sympathy determines that the node is a 

failure node. The failure detection occurs at a sink node. If this method is applied to mobile nodes, 

Sympathy would classify all mobile nodes that leave a sensor network as failure nodes because the 

sink cannot receive any messages from them. All mobile nodes would produce incorrect 

determinations, and so Sympathy is not applicable to mobile nodes. 

Rost and Balakrishnan [16] and Meier et al. [17] propose Memento and DiMo, respectively. 

Memento and DiMo are network management systems for wireless sensor networks. These methods 

separate all nodes into two groups: observer nodes and target nodes. Each node periodically sends 

heartbeat messages to its neighbor nodes. The observer node monitors whether the target node is alive 

or not. If the observer does not receive a heartbeat message within a certain monitoring time from the 

target node, then the observer node considers the target node to have failed. These researchers also 

propose methods that consider wireless packet losses to reduce the false positive rate. In DiMo, the 

target node sends a recovery message to the sink node via another node when the target node is alive 

but cannot send any messages to the observer node. Memento develops a variance-bound based failure 

detector that uses the mean and standard deviation of the number of missing heartbeats. Memento and 

DiMo do not consider the idea that mobile nodes can leave a sensor network. When an observer node 

monitors a mobile node, the mobile node can leave the monitoring area. Then, the observation 

relationship is broken and the observer node considers the mobile node as a failure node, even though 

the mobile node is alive. 

Since they do not consider the movements of mobile nodes, the above in-network approaches 

cannot be applied to monitor mobile nodes. Therefore, we have to devise a new node failure detection 

method for application monitoring mobile nodes. As a mobile node can move within a monitoring 

area, stay in another place after leaving that area, and then return to the original area, the new method 

should not classify a mobile node that leaves a sensor network as a failure node. The new method runs 

on a centralized server, located outside the sensor network, in order to detect mobile node failures correctly. 
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3. System Architecture 

We describe the system architecture and features of each component. The architecture is shown in 

Figure 1 [10]. The system consists of 4-tuple S = (A, G, R, M) where A is an application; G is a 

gateway; R = {r1, r2,..., rm} is the finite set of reference nodes; and M = {m1, m2,..., mn} is the finite set 

of mobile nodes. 

Figure 1. System Architecture. 

 
 

The mobile nodes are located at the lowest level and attached to mobile assets such as medical 

equipment, hot coils, ship blocks, staff members, and visitors. The mobile node is a battery powered 

device and has a battery conserving sleep mode. The location of the mobile node is considered to be 

the position of the mobile asset. The mobile node receives RSSIs (Radio Signal Strength Indicators) 

from the reference nodes and sends them to the gateway periodically. The RSSIs will be used by the 

gateway to calculate the position of the mobile node. Initially, each mobile node becomes a child node 

of the one reference node that sends the strongest RSSI. The mobile node selects another parent node 

when it cannot receive any signal from the previous parent. 

The reference nodes are stationary nodes and form the infrastructure of the wireless sensor network. 

They are deployed in a monitoring area, provide high spatial resolution, and monitor mobile nodes. 

Each reference node knows its own location and exchanges messages with its neighbor nodes. 

Reference nodes play roles of route nodes routing messages. When reference nodes receive messages 

from mobile nodes, they relay those messages to the gateway, and also relay control messages received 

from the gateway to the mobile nodes. 

The gateway becomes a bridge between the wireless sensor network and the application through an 

IP-based network. The gateway receives the messages related to the locations of the mobile nodes 

from the reference nodes and calculates their locations. The calculated locations are transmitted to the 

application. The location data contains data of x, y, and timestamp. The x and y are the position of a 

mobile node and the timestamp is the time at which the gateway calculates the position. The gateway 

sends a connection state of the mobile node to the application when the connection state of the mobile 

node changes.  

The asset tracking application is in the highest level of the architecture. The entire monitoring area 

is given to the application, which connects to the gateway and acquires the locations and the 
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connection states of all mobile nodes. This system keeps track of the current positions of the nodes and 

determines whether the nodes are inside or outside the monitoring area. The application displays their 

current positions and in/out statuses on the user interface. Therefore, the application is used for two 

services: asset finding and asset management. The asset finding service requires the approximate 

position of each mobile asset and the asset management requires the exact number of inside and 

outside mobile assets. This paper describes issues related to the asset management. 

4. Status Failure Detection 

4.1. Problem Definition 

In asset management, an application determines the status of each mobile asset using a WITHIN 

function. We will describe the basic concept. 

Let R be the boundary of a monitoring region. There are several mobile assets to be monitored and 

their locations are loc1, loc2,..., loci. Then, the status, si, of each mobile asset can be determined as 

inside or outside the space by using a WITHIN(R, loci) function written as Equation (1): 

( , )i

i

Inside if WITHIN R loc true

s

Outside otherwise

  
 
 

                                         (1) 

The WITHIN(R, loci) function in Equation (1) tests whether the loci is inside R or not. If a mobile 

node does not report its position, then the application determines that it is outside R. In many 

applications utilizing WSNs, there may be difficult environmental conditions such as communication 

barriers, physical obstructions, and electromagnetic noise, any of which may cause a node to fail or 

temporarily disconnect from a sensor network. Therefore, the determined positions or in/out statuses of 

the mobile assets in the mobile asset tracking application might be incorrect. However, most 

applications utilizing WSNs assume that all nodes are stable. The incorrect in/out status is summarized 

in Table 1. The state transition error and the exhausted battery will be handled in the paper. 

Table 1. Incorrect in/out status. 

Real 
Location 

Application’
s Decision 

Reason 

Outside Inside 
. State transition error 
. Protocol error 
. Faulty H/W or S/W 

Inside Outside 
. Exhausted battery 
. Faulty H/W or S/W 

4.2. Connection State Model 

Each mobile asset with a mobile sensor node can move here and there within a monitoring area,  

stay in another place after leaving that area, and then return to the original area. When a mobile asset 

changes its position, the connection state of the mobile node changes. This change is reported by the 
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gateway. The connection state (CS) is the set of possible states that the mobile node can have and is 

defined as CS = {Joined, Transitive, Left}. The mobile node has only one of the connection states at a 

specific time. This situation is shown in Figure 2. 

Figure 2. State transition diagram. 

 
 

A mobile node in the joined state connects to a sensor network and exchanges messages with its 

parent node. The location of the mobile node will change when it moves. Every node starts from the 

joined state because the sensor network can recognize the node as one of its members after it connects 

to the network.  

A mobile node in the left state disconnects from the sensor network. Therefore, it cannot exchange 

any messages with other nodes. It is trying to rejoin the network. When it finds a connection to a 

parent node, its state is changed from left to joined. 

A mobile node in the transitive state has disconnected from the sensor network temporarily due to a 

movement from its current position to another place or that it has encountered unstable 

communication. If the mobile node moves out of the radio range of its parent node, it has to change its 

parent node. Therefore, it cannot send any message to the gateway until it finds a new connection to 

the network. The location of the node will not change and the gateway reports the previous position of 

the node because the gateway cannot determine its current location. Since it has been trying to rejoin 

the network, the state of the node will eventually become either joined or left. The condition of the 

state transition from the transitive state is described as Equation (2): 

'

tr

tr

Joined T T and if a node rejoins the network

CS

Left T T and if a node can t connect to the network

        
 
            

                    (2) 

where Ttr is sojourn time of a mobile node in the transitive state and T is the threshold. 

A mobile node should change its state from transitive to joined before time T or to left after time T. 

We produced a distribution map, shown in Figure 3, to understand the characteristic of the sojourn 

time in the transitive state of nodes. Figure 3 shows the sojourn time interval and the frequency with 

which nodes stay in the transitive state during the period. Data were received from all asset nodes for 

ten days. The x-axis presents the sojourn time interval of the transitive state and the y-axis displays the 

frequency of each interval. For example, nodes sojourn in the transitive state about 400 times between 

120 and 139 seconds. 
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Figure 3. Example of distribution map of sojourn time intervals in the transitive state. 

 

4.3. State Classifier 

In this section, we will explain how to solve the first case, in which an asset exists outside the 

monitoring area but the application determines that it exists inside. We will introduce two methods that 

use the connection state to rectify this problem.  

From the distribution map, we can recognize that some nodes in the transitive state keep their states 

for a long time without any state transition. The long transitive state is caused by a gateway. If the 

gateway misses a node’s connection state message, the gateway sends the previous connection state of 

the node continuously until a new connection state message arrives from that node. This method has an 

advantage in that it prevents a user from recognizing the temporal disappearance of the node. If the 

gateway misses the connection state message continuously, the method generates an error, telling the 

user that the node has stayed in the same position even though the node has moved to another place. 

Therefore, we consider a node with a long transitive state as an abnormal node. The detected abnormal 

node will be reported to the user and the network administrator. We have to determine a threshold that 

separates the normal and the abnormal states. This threshold is called the STO (sojourn timeout) in this 

paper. We propose two state classifiers to determine the threshold value. 

4.3.1. Network-Based Classifier (NBC) 

Our initial approach to the design of the state classifier uses attributes of a sensor network. We call 

this classifier a network-based classifier. When a mobile node moves from one place to another and 

escapes from the radio range of its parent node, the parent node detects that it cannot exchange any 

message with the node. Then, the parent node waits for a certain amount of time to determine whether 

the child has disconnected from the system or not. The parent node reports a node drop message to a 

gateway if it cannot receive any message from the child after a certain amount of time has expired. 
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When the gateway receives the node drop message, it changes the connection state of the dropped 

node from joined to transitive. Then, the gateway waits a given time to decide whether the dropped 

node has disconnected from the sensor network. If another reference node reports that the dropped 

node has connected to it, then its connection state will be changed from transitive to joined. If the 

given time expires and the gateway does not receive a join message from any reference nodes, then the 

gateway changes the original node’s connection state from transitive to left and reports this new 

connection state to the application. 

A valid sojourn timeout in the transitive state of a mobile node can be calculated according to 

Equation (3): 

Tl  STO  Tu                                                                 (3) 

Tl = Ta + Te + d  Tp + d  Tm 

Tu = Ta + Te + Tn + d  Tp + d  Tm 

 Ta : local waiting time between a parent node and a mobile node 

 Te : network-wide waiting time at the gateway 

 d : depth of tree 

 Tp : propagation delay time between nodes 

 Tm : message processing time at a node 

 Tn : connection construction time required to set up a connection anew when a node joins 

the network 

One value is selected from [Tl, Tu] as STO. The STO is used to detect abnormal nodes. If a node's 

real sojourn time in the transitive state is longer than STO, it is considered an abnormal node with an 

abnormal state. As the separation of the normal and the abnormal states starts before the reports on the 

connection states of mobile nodes is complete, if STO is less than Tl, the short STO might generate an 

incorrect determination about the normal or abnormal states of mobile nodes. Therefore, some normal 

nodes will be considered abnormal nodes. If STO is larger than Tu, the long STO might also generate 

an incorrect determination because the separation of the normal and the abnormal states is delayed. 

Therefore, abnormal nodes are considered as normal nodes until the separation process finishes. 

4.3.2. Frequency-Based Classifier (FBC) 

The network-based classifier uses a fixed sojourn timeout when the nodes and the gateway are 

initialized. Therefore, it might not adopt the characteristics of movements of the mobile nodes in the 

sensor network. If the sensor network monitors a wide area, the sojourn time in the transitive state of a 

mobile node moving from one side of the network to another might be longer than the fixed sojourn 

timeout that is used by NBC. This might cause unexpected results. We propose another classifier that 

adopts the real movements of mobile nodes within the sensor network. We call this classifier a 

frequency-based classifier; it uses frequency data extracted from accumulated movement data.  

We will consider a sojourn time with a low frequency as an abnormal state, as this situation rarely 

occurs. However, it is difficult to extract a threshold to separate the normal state and the abnormal 

state from the frequency data because sojourn times with high frequencies, low frequencies, and zero 

frequencies are mixed in the data without any rule. Therefore, the classifier transforms the frequency 
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data by increasing high frequencies and attenuating low frequencies to separate the sojourn times into 

normal state and abnormal state. It will be easy to select a threshold from the transformed frequency 

data because the low frequencies will be zero after the transformation. 

Consider a set S = {(t1, f1), (t2, f2),..., (tn, fn)}, where t1 < t2 < ... < tn, ti indicates the sojourn time that 

a node stays in the transitive state, and fi indicates the frequency that represents the number of nodes 

staying in the transitive state during the sojourn time. This information is collected from the sensor 

network. We transform S into S' with the frequency-based classifier to categorize the sojourn times 

into the normal state and the abnormal state. Then, we get the transformed set S' = {(t1, f'1), (t2, f'2),..., 

(tn, f'n)}, where f'i indicates a transformed frequency for the sojourn time. We separate S' into two sub 

sets, S'1 and S'2 : S'1 = {(t1, f'1), (t2, f'2),..., (ti, f'i)} with (tj, f'j)  S'1, f'j > 0, S'2 = {(ti+1, f'i+1), (ti+2, 

f'i+2),..., (tn, f'n) with (tk, f'k)  S'2, f'k = 0, where t1 < t2 <...< ti < ti+1 <...< tn. 

The frequency based classifier consists of two functions: scoring function and density function, 

which transform the collected frequencies into the new frequencies. The scoring function describes the 

effect of the frequencies within its neighborhood on the data point. It is written as Equation (4): 
2

2

( )

2 | |

( , )

0

f fx y

e if x y

f x y

otherwise

 


 



  
 
 


                                                    (4) 

where xf and yf are frequencies of sojourn times x and y in the transitive state, respectively, δ controls 

the width of neighborhood, and y  [x − δ, x + δ]. Figure 4 shows the scoring function graphically. 

Figure 4. Graphical illustration of the scoring function. 

 
 

An important factor is that the data that falls within [x − δ, x + δ] actually affects the density and all 

other data are neglected. The density function at the sojourn time x is defined as the sum of the scoring 

functions of all neighbors within [x − δ, x + δ]. The function is written as Equation (5): 
2

2

( )

2

1 1

( ) ( , )

i
f fx xN N

i
f

i i

f x f x x e 






 

                                                      (5) 

where x1
f is the frequency of the sojourn time x − δ and xN

f is that of the sojourn time x + δ. 

If δ increases, more and more data affects the frequency of x. On the other hand, the density of x 

might be equal to zero if only x exists within [−δ, +δ] and there is no other data within the boundary. 

Therefore, the density of the sojourn time, which rarely happens, is very low or equal to zero. The 

classifier separates the sojourn times into two consecutive groups using the density values: normal 
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state and abnormal state. The normal state has a certain frequency value and the abnormal state has a 

frequency value equal to zero.  

Lemma. Let X be the sojourn time in the transitive state of a node, and let t be a sojourn timeout 

larger than 1. Then, the probability that the node stays in the transitive state longer than t is less than or 

equal to 
( )E X

t
. The proof follows by applying Markov's inequality to obtain the probability, as shown 

in Equation (6): 

P (|X|  t)  
( )E X

t
                                                         (6) 

Figure 5. Density and scoring functions. 

 
 

function density_function(frequency, n, delta) 

Input: frequency data frequency[], the size of frequency array n, 

the boundary of neighbors delta 

Return: transformed frequency 

begin 

1:   new_frequency[n]; 

2:   for (i = 1; i <= n; i++) new_frequency[i] = 0; 

3:   for (i = 1; i <= n; i++) { // sojourn times 

4:      for (j = i-delta; j <= i+delta; j++) { // sojourn times within [i - δ, i + 

δ] 

5:         if (1 <= j and j <= n)  // ignore j, if j < 1 or j > n 

6:            new_frequeny[i] += scoring_function (frequency[i], 

frequency[j], delta) 

7:      } 

8:   } 

9:   return new_frequency; 

end 

 

function scoring_function (x, y, delta) 

Input: frequency of sojourn time x, frequency of x’s neighbor y, 

the boundary of neighbors delta 

Return: score between x and y 

begin 

10:   return exp( - ( ((x-y)  (x-y)) / (2delta) ) ); 

end 

} 
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The procedures of the scoring function and the density function are described in Figure 5. In Figure 5, 

the density function selects frequencies of a sojourn time x and its neighbors within [x − δ, x + δ] and 

calculates the transferred frequency of x from line 4 to line 7. The scoring function then calculates the 

score between x and its neighbor at line 10. The frequencies in Figure 3 are transformed by the two 

functions and the result is shown in Figure 6. In Figure 6, we can separate the sojourn time intervals 

into two groups: from 0 to 299 and from 300 to 500. The sojourn time intervals of the former have 

frequencies larger than zero and those of the latter have frequencies equal to zero. We consider the 

former as the normal state and the latter as the abnormal state. 

Figure 6. An example of the frequency transformation with δ = 3. 

 
 

4.4. Battery Lifetime 

In this section, we will explain how to solve the second case, in which an asset is inside the 

monitoring area but the application determines that it is outside. We will introduce a method that uses 

the battery lifetime. 

Each mobile node is a battery powered device. The battery has a limited lifetime. If the battery is 

exhausted, the mobile node cannot join the sensor network. Therefore, the application can determine 

that the asset is outside the area even though it is actually inside, because the application cannot 

receive the location of the mobile node from the gateway. To overcome this unexpected result, we 

propose a battery lifetime estimator that predicts the battery lifetime of the mobile node and uses the 

estimated lifetime to determine the correct status of the mobile node. 

The amount of energy consumption of sensor nodes is different according to the status of the nodes. 

The approximated energy consumption phases are given in Figure 7 and the variables are listed in  

Table 2.  
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Figure 7. Approximation of energy consumption phases. 

 

Table 2. List of variables. 

Symbol Description 
Cs,C's amount of consumed current in sleeping phase 
Cp,C'p amount of consumed current in polling phase 

Ct amount of consumed current in transmitting phase 
Ts,T's duration of sleeping phase 
Tp,T'p duration of polling phase 

Tt duration of transmitting phase 
Tc,T'c duration of one cycle 

Cb initial battery current 

 

The energy consumption of the inside node can be divided into three phases: sleeping, polling, and 

transmitting. The node spends most of its time in the sleeping phase, during which the microcontroller 

and radio are utilizing low power states and the device is waiting for a timer to expire to wake it. When 

the device wakes, it enters the polling phase, during which the node exchanges beacons with its parent 

node to notify that it is alive and collects RSSIs from reference nodes. Finally, in the transmitting 

phase, the node sends signals to its parent node. After sending the data, it goes into the sleeping phase. 

The procedure is repeated periodically. The transmitting and polling phases consume an order of 

magnitude more energy than the sleeping phase and the transmitting phase expends the largest amount 

of energy. 

The energy consumption of the outside node can be divided into two phases: sleeping and polling. 

The sleeping and polling phases are repeated periodically. The transmitting phase does not happen 

because the node cannot find any connection to the sensor network.  

The amount of energy consumption of the inside and the outside nodes is different. The inside node 

consumes more energy than the outside node. The sleeping time of the outside node is shorter than that 

of the inside node, in order to allow it to rejoin the network quickly. The polling time of the outside 

node is also shorter than that of the inside node, in order to reduce energy consumption. Transmitting 

does not occur to reduce energy consumption when the node is outside the monitoring area.  

We will estimate the consumed current and the predicted battery life times of an inside node and an 

outside node as follows. 

The average consumed current, Cavg, during unit time of an inside node is written as Equation (7): 

( ) ( ) ( )p p t t s s
avg

c

T C T C T C
C

T

    
                                              (7) 
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The predicted battery life time, Tb, of the inside node is defined as Equation (8): 

b
b

avg

C
T

C
                                                                  (8) 

The average consumed current, C'avg , during unit time of an outside node is calculated as  

Equation (9): 

( ' ' ) ( ' ' )
'

'

p p s s
avg

c

T C T C
C

T

  
                                                 (9) 

The predicted battery life time, T'b , of the outside node is defined as Equation (10): 

'
'

b
b

avg

C
T

C
                                                               (10) 

The remaining current, Cr, of a mobile node at the present time is estimated as Equation (11): 

1 1
(( ) ( ' ))

N M
r b avg i avg j

i j
C C C T C T

 
                                            (11) 

where Ti is the duration that the node stayed inside the monitoring area and Tj is the duration that the 

node stayed outside. 

The estimated life time, Te, of the mobile node is calculated as Equation (12): 

'

r r
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                (12) 

We can detect an exhausted battery by using the estimated life time Te and the remaining current Cr. 

We decide that a node has an exhausted battery if Te is less than the specified life time. This means 

that the battery will die before the end of the specified life time. If the remaining current is less than 

the specified remaining current, the battery cannot guarantee the normal operation of the node even if 

the current remains. The specified remaining current is calculated as follows: be  Cb, where be 

represents the efficiency rate of the battery that is inserted into the node. Therefore, we decide that a 

node has an exhausted battery if Cr < be  Cb. We will inform the network administrator and the user 

that the node’s battery is exhausted. 

5. Performance Evaluation 

In this section we discuss our experimental environment and results based on real data. 

5.1. Experimental Environment 

To show the practical significance of our new approach, we performed experimental evaluations of 

the approaches. They were executed on a trace of real data generated by a mobile asset tracking 

system. The system had been operating in the emergency room of the Incheon Gil Medical Center in 

Korea to monitor mobile medical equipment. It was designed to satisfy several requirements given by 

nurses who work in the emergency room. The map of the emergency room is shown in Figure 8. It 

includes four sections that are partitioned according to patient types treated in them, two X-Ray rooms, 

a CT (Computed Tomography) room, a control room for X-Ray and CT operations, a staff station, 
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nurses’ and doctors’ offices, a waiting room, a hallway, and a storage. We used four different types of 

mobile medical assets: ten IV poles, four ventilators, five syringe pumps, and two wheelchairs. Each 

mobile node was attached to each mobile asset. The component and legend of the system are 

summarized in Table 3.  

Figure 8. Map of the emergency room. 

 

Table 3. Component and legend of the mobile asset tracking system. 

Component Count Icon/Figure Meaning Section Patient Types 

Application 1  Ventilator Red 
Unconscious or 

Injured 

Gateway 1  
Syringe  
Pump 

Green Children 

Reference node 29  Wheelchair Orange Elderly 

Mobile node 21  IV Pole Yellow General 

   Bed   

   Door   

 

The system was installed in the emergency room 50 m × 40 m, which is partitioned by concrete 

walls. As the walls affect the signal propagation among the nodes, we carried out two tasks: simulation 

and measurement. We made a deployment plan for the reference nodes by a simulator. And we put the 
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nodes on their positions selected by the deployment plan and measured the actual signal strength from 

the reference nodes at different positions within the emergency room. If the signal strength from 

reference nodes was very different from an expected value, then some of the reference nodes were 

moved to other positions. The nodes’ moved positions using the measurement were somewhat 

different from the positions using the simulation because the simulation did not consider the walls. 

Therefore, the final positions of the reference nodes were selected by the actual measurement. 

The system had been maintained every two weeks and exhausted batteries were changed during the 

maintenance period. The maximum number of nodes that the gateway can have is 65,535. The 

maximum number of children of each reference node is eight. On the average, the accuracy of the 

location algorithm using RSSI is 2.5 m. The accuracy is enough to satisfy the nurses because an asset 

with the error boundary can be recognized by the nurses. However, the location algorithm is not 

discussed in this paper because it is not our research issue. The beacon exchange and the location 

update occur together at each mobile node to reduce energy consumption. Each mobile node wakes up 

every 30 seconds and exchanges beacons with its parent to confirm that the connection between the 

two nodes is valid. After confirming the connection, the node collects RSSIs from its neighbor 

reference nodes and transmits them to its parent. After sending the data, the node goes into the sleeping phase.  

The nurses had been satisfied with the location accuracy of assets but sometimes complained about 

the incorrect statuses of them. They counted the number of inside and outside assets twice: by 

themselves and through the system, and produced some reports containing the number and the name of 

assets with the incorrect status.  

We acquired the nurse’s reports and the log data that the system had generated from May 2007 to 

September 2007. The system determined the statuses of mobile nodes by using node positions during 

the period. Ten days amount of data from 1 July to 10 July are used to analyze the cause of incorrect 

status. All dates on which the incorrect status events occurred are extracted from the nurses’ reports 

and also both the connection state and the location data of each mobile node for the dates are extracted 

from the log. We apply our method to the log data of the dates on which the incorrect status occurred 

and compare the in/out status in the log data to that produced by our method. The nurses’ reports are 

used to confirm the correctness of our method. 

5.2. Status Change from Inside to Outside 

We evaluate the impact of transitive state by varying the sojourn timeout. STO is used to separate 

the normal node and the abnormal node. If the sojourn time in the transitive state of a mobile node is 

larger than STO, the state classifiers determine that the node is an abnormal node and change its 

connection state from transitive to left. State classifiers also change its status from inside to outside. 

We use two methods, the network-based classifier and the frequency-based classifier, to determine the 

STO value. 

Impact of the sojourn timeout: We vary STO between three and eight minutes in increments of 

one minute. Figure 9 shows the number of nodes that change status from inside to outside according to 

varying STO. For example, if the STO is set to three minutes, the status of eight nodes on 3 July will 

be changed from inside to outside. Decreasing STO increases the number of nodes whose status is 

changed from inside to outside. The number of nodes with changed status is rapidly changed before 
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five minutes; however, it is nearly changeless after the time. From this fact, we can infer that most of 

state transitions occur before five minutes. Therefore, the state transition after five minutes might be an 

abnormal state. 

Impact of δ: We evaluate the impact of δ on the frequency of the sojourn time interval in the 

transitive state. The purpose of FBC is to divide the sojourn time intervals into two groups: normal 

state with a certain frequency value and abnormal state with a frequency value equal to 0. Increasing δ 

enlarges the width of neighborhood. Therefore, more and more data influence the frequency, and the 

new frequency of each sojourn time interval increases. We vary δ from 1 to 100. The result is 

displayed in Figure 10. When δ is equal to 1 or 3, the sojourn time intervals are divided into two 

consecutive groups. One group contains the sojourn time intervals from 0 to 299 seconds, for which 

the frequencies of the intervals are larger than 0. The other is from 300 to over 500 seconds, for which 

the frequencies of the intervals are equal to 0. When δ is equal to 10 or 100, the sojourn time intervals 

are divided into more than three groups with consecutive time intervals. Therefore, we select 3 and 

300 seconds as the best δ and STO, respectively. 

Figure 9. Number of nodes with changed status from inside to outside for different STOs. 

 

Figure 10. Example of frequency graph for different δ. 

 



Sensors 2010, 10                            

 

 

2726

Failure detection of inside node: We compare the number of inside nodes computed using both 

STO and the locations of mobile nodes with that of inside nodes computed using the locations of the 

nodes. Figure 11 shows the comparison results. We set STO to five minutes, as extracted from  

Figure 10. “Loc” means that the application uses the location of the mobile node to determine node 

status. “Loc + STO” means that the application uses both the location and the sojourn timeout in the 

transitive state of the mobile node to determine node status. “Nurse” indicates the number of nodes 

counted by the nurses. The night and day represent the time shift of the nurses.  

The first bar indicates that 17 out of 21 nodes are inside the monitoring area and four nodes are 

outside the area when the night group checked the number of mobile assets on July 3 with the mobile 

asset tracking system. However, the state classifier determines that one node has an abnormal 

transitive state and changes its status from inside to outside when we apply our method to the same 

date and group. Therefore, the second bar on that date shows that 16 out of 21 nodes are inside and 

five nodes are outside. The third bar generated by the nurses on that date confirms that our method 

detects and corrects all incorrect statuses that the system produces by using only the location data. The 

result of July 7 is similar to that of July 3. 

Figure 11. Failure detection of inside node. 

 

5.3. Status Change from Outside to Inside 

In this section, we evaluate the impact of the battery lifetime of a mobile node. The battery lifetime 

is used for separating normal and abnormal nodes. If the estimated battery life time is larger than a 

certain threshold, the estimator determines that the node has an exhausted battery, and changes node 

status from outside to inside. The battery life time estimator is useful to detect an abnormal node that 

stays outside for a long time without battery change. We used a lithium battery, CR123A, made by 
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Panasonic. The battery and node properties related to the current consumption are displayed in  

Table 4. 

Table 4. Summary of battery and node properties. 

Parameter Value Parameter Value 
Cb 1300 mAh be 0.8 
Cs 0.07 mA C's 0.07 mA 
Cp 12.5 mA C'p 12.5 mA 
Ct 40 mA Tt 2 sec 
Ts 30 sec T's 20 sec 
Tp 5 sec T'p 0.5 sec 

Cavg 3.908 mA C'avg 0.373 mA 

 

We compare the number of outside nodes computed using both the battery lifetime and the location 

of a mobile node with that of outside nodes based on only the location of one node. Figure 12 shows 

the comparison results. “Loc + Bat” means that the application uses both the location and the battery 

life time of the node to determine its status.  

Figure 12. Failure detection of outside node. 

 
 

The first bar means that three out of 21 nodes are outside the monitoring area and 18 nodes are 

inside when the day group checked the number of mobile assets on July 9 with the mobile asset 

tracking system. However, the battery lifetime estimator determines that three nodes have exhausted 

batteries and changes their status from outside to inside when we apply our method to the same date 

and group. Therefore, the second bar on that date shows that no node is outside. The third bar 

generated by the nurses on that date confirms that our method detects and corrects all incorrect statuses 
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that the system produces by using only the location data. The result of September 27 is similar to that 

of July 9. 

The results of June 12 and July 25 show the incorrect determination about the statuses of mobile 

assets. When the day group checked the number of mobile assets on June 12 with the system, the first 

bar shows that five nodes are outside the monitoring area and 16 nodes are inside. The second bar on 

that date shows that only one node is outside because our method changes the four outside nodes’ 

statuses from outside to inside. However, the third bar generated by the nurses on the date shows that 

three nodes are outside and 18 nodes are inside. Our method determines the statuses of two nodes 

incorrectly. We consider the two nodes to have halted. A similar pattern may be observed on July 25. 

However, it is difficult to classify a disappeared mobile node from the sensor network as either a left 

node from the monitoring area or a halted node within the area because the gateway reports the same 

connection state on them. Therefore, we need additional work in the future to solve the problem.  

6. Conclusions 

In this paper, we propose methods to detect and correct incorrect in/out statuses of mobile nodes 

attached to mobile assets. If a mobile asset tracking system uses the position of a mobile node without 

being aware of possible incorrect in/out status, the system can generate errors. We tackle this problem 

to produce more reliable results. 

We propose two state classifiers, network-based and frequency-based classifiers, which are applied 

to the in status. They categorize a transitive state as either normal or abnormal. Each classifier 

determines a sojourn timeout to discriminate between these two states. The network-based classifier 

uses certain properties of the sensor network: local waiting time between a parent and a mobile node, 

and entire waiting time among gateway and reference nodes. The frequency-based classifier uses the 

number of nodes that stay in the transitive state during a specific period. 

We design a battery life time estimator that is applied to the out status. The estimator categorizes a 

mobile node as inside or outside by using a battery timeout. The battery timeout is computed by the 

number and duration of stays inside and outside and by the amount of the current consumption of each 

type of status. 

We compare our schemes to a conventional method that uses only the location data to determine 

in/out statuses of mobile nodes. Experimental evaluation on real data sets shows that our approach 

recognizes several nodes that are determined to be in incorrect statuses and that it then corrects their 

statuses. By recognizing and correcting the incorrect in/out statuses, we can improve the in/out 

determination process for the statuses of mobile assets. We also increase the reliability of the mobile 

asset tracking application and thereby improve customer satisfaction. 

In addition, although this study uses 29 reference nodes and 21 mobile nodes, the system can be 

easily expanded to monitor increased assets within an enlarged area. As the number of nodes that a 

gateway can have is limited due to node density, address space, and data collision in the air, we can 

divide the monitoring area into several sub-areas or into different floors and install one gateway in 

each sub-area to manage the increased assets. Then, the application gathers data from each gateway 

and the proposed method is applied to the gathered data. Future work will advance the proposed 
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method to classify a disappeared mobile node from the sensor network as either a left node from the 

monitoring area or a halted node as well as investigate how well the method works in the case. 
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