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We have developed a three-dimensional, self-consistent full-quantum transport simulator for
nanowire field effect transistors based on the eight-band k · p method. We have constructed the
mode-space Hamiltonian via a unitary transformation from the Hamiltonian discretized in the
k-space, and reduced its size significantly by selecting only the modes that contribute to the
transport. We have also devised an approximate but highly accurate method to solve the
cross-sectional eigenvalue problems, thereby overcoming the numerical bottleneck of the
mode-space approach. We have therefore been able to develop a highly efficient device simulator.
We demonstrate the capability of our simulator by calculating the hole transport in a p-type Si
nanowire field effect transistor and the band-to-band tunneling current in a InAs nanowire tunnel
field effect transistor. © 2009 American Institute of Physics. �doi:10.1063/1.3208067�

I. INTRODUCTION

The short channel effects �SCEs� of conventional planar
metal oxide semiconductor field effect transistors �MOS-
FETs� are major obstacles in downsizing of the devices into
the nanometer scale regime. As a candidate for next-
generation devices that can significantly reduce SCE and
possibly replace the conventional MOSFETs, nanowire FETs
with multiple gates have drawn considerable attention and
have been subject of active researches in recent years.1,2

In the modeling and simulation of electrical properties of
such nanowire devices, transport should be treated fully
quantum mechanically, and self-consistent charge densities
and potential profile should be obtained by solving the
Schrödinger equation together with the Poisson’s equation.
Simulators based on the single-band effective-mass Hamil-
tonian have been developed to simulate nanowire FETs with
n-type channel,3–5 and it has been verified, against more rig-
orous, atomistic tight-binding �TB�-based simulators, that
they are valid down to about 3�3 nm2 cross sections.6,7 The
single-band effective-mass Hamiltonian can be, however, no
longer applied to devices where valence bands are involved,
such as Si p-type FETs and III-V MOSFETs with band-to-
band tunneling �BTBT� effect because the heavy and light
holes in valence band are strongly coupled to each other and
so they cannot be described by an effective-mass Hamil-
tonian which gives simple parabolic dispersion relationship.

The k · p �KP� method is one of the most popular meth-
ods to describe the valence band of Si and both conduction
and valence bands of direct band gap semiconductors.8 It has
been widely applied to the problem of calculating electronic
structures of various semiconductors. The transport prob-
lems, semiclassical or quantum mechanical, have been also
addressed by using KP, although the full quantum treatment
has been mostly restricted to one-dimensional transport

problems.9 Recently, a quantum transport simulation of a ul-
trathin body �UTB� device using KP has been demonstrated,
but it was non-self-consistent calculation based on the four-
band Hamiltonian, and the focus of the work was rather to
demonstrate the capability of the contact block reduction
method.10

The TB method is another widely used method to de-
scribe valence bands. Recently, full-quantum, self-consistent
transport simulators based on TB have been developed and
successfully applied to UTB and nanowire FETs11,12 but the
computational burden of the simulators is enormous. The TB
model is generally regarded more accurate than the KP
model, mainly due to its atomistic treatment. In self-
consistent transport simulations of FETs with a few hundred
millivolts of drain bias applied, however, the difference be-
tween the two models is expected to be diminished.

In this work, we have applied the k · p method to the
three-dimensional �3D�, self-consistent, and full-quantum
transport problem in nanowire devices. To the best of our
knowledge, there has been no such previous attempt. We
were able to develop a computationally highly efficient
simulator by reducing the size of the Hamiltonian via trans-
formation to the mode-space basis and resolving the issue of
solving eigenvalue problems for each cross-sectional plane,
which is a numerically challenging problem common to all
mode-space approaches. Hence, compared to TB-based full-
quantum simulators, our KP simulator has clear advantage in
terms of the computational cost. In this paper, we will focus
on the theory, numerical aspect, and capability of our KP
simulator. The benchmarking of the TB and KP approaches
will be deferred to later publication, where it will be shown
that the results from the two approaches agree quite well.

II. APPROACH

A. The KP Hamiltonian and its discretization

A schematic diagram of the 3D nanowire FET consid-
ered in this work is shown in Fig. 1. The source and drain area�Electronic mail: mshin@kaist.ac.kr.
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heavily n or p doped semi-infinite semiconducting wires, the
channel is usually intrinsic or lightly doped, and the gates
surround the channel as shown in the figure. To simulate the
transport in the device, we have used a 8�8 KP Hamiltonian
that is written as

HKP�kx,ky,kz� = H0,KP�kx,ky,kz� + VKP, �1�

where H0,KP�kx ,ky ,kz� and VKP are given by Eqs.
�A2�–�A15�. To construct the Hamiltonian matrix suitable for
numerical calculation, we first discretize HKP�kx ,ky ,kz� in the
real space, by converting kv→−i� /�v, where v=x ,y ,z. The
discretized Hamiltonian in the real space is then of the form

HR = �
HR�1� WR

WR
† HR�2� WR

WR
† HR�3�

� WR

WR
† HR�Nx�

� , �2�

where Nx is the number of cross-sectional planes in the trans-
port �x� direction. The Hamiltonian HR�i� for the ith plane
and the coupling Hamiltonian WR are NbNR�NbNR matrices,
where Nb is the number of bands used in the KP Hamiltonian
�Nb=8 for the eight band KP Hamiltonian� and NR=NyNz,
where Ny and Nz are numbers of real space grid points in the
y and z directions, respectively. HR�i� can be written as

HR�i� = H0R + VR�i� , �3�

where H0R is the discretized kinetic Hamiltonian of Eq. �A2�
and VR�i� is a diagonal matrix with diagonal elements corre-
sponding to the potential EC�V�−q0��xi ,y ,z� in the ith plane,
where EC�V� is the conduction �valence� band edge, ��x ,y ,z�
is the vacuum level potential, and q0 is the elementary
charge.

The Hamiltonian HR in Eq. �2� discretized in the real
space can be transformed to k-space via a unitary transfor-
mation as follows:

HK = UK
† HRUK, �4�

where UK is a unitary matrix given in Eq. �B2�. HK is written
as

HK = �
HK�1� WK

WK
† HK�2� WK

WK
† HK�3�

� WK

WK
† HK�Nx�

� , �5�

where

HK�i� = UK
† HR�i�UK = H0K + VK�i� , �6�

WK = UK
† WRUK. �7�

where

H0K � UK
† H0RUK �8�

and

VK�i� � UK
† VR�i�UK. �9�

See Appendix B for detailed description of the k-space trans-
formation.

The advantage of using the k-space Hamiltonian lies in
that, using a simple reordering scheme as detailed in Appen-
dix C, we can elect to use smaller-sized Hamiltonian. That is,
the size NbNK of discretized k-space Hamiltonians can be
much smaller than the size of its counterpart in the real space
which is NbNR. NK depends on the cross-sectional area of a
nanowire and also on the energy range near a band edge that
one is interested in. For instance, if one desires to accurately
produce a subband structure of a Si nanowire of 5�5 nm2 in
the energy range of 0.5 eV from the valence band edge, NK

=200 would be sufficient, while NK should be bigger if one
wishes to consider a wider energy range. A typical size NR in
the real space is 2500 for the nanowire of the same dimen-
sion. The k-space Hamiltonian can be therefore effectively
reduced in size to less than one-tenth of its real-space coun-
terpart.

B. Mode-space Hamiltonian

For an efficient full-quantum simulation, the k-space
Hamiltonian turned out to be still too big to handle. We have
therefore employed a mode-space approach where much
smaller-sized mode-space Hamiltonian can be used. We first
define “mode” in the ith cross-sectional plane as follows:

�HK�i� + WK + WK
† ���m�i�	 = Em�i���m�i�	 , �10�

where the mth eigenfunction ��m�i�	 represents the mth
mode. We then form a unitary matrix that consists of the
mode wave functions as column vectors,

LS LCH

S G

LG

xy
z

Ox

LD

D

W

H

FIG. 1. �Color online� Schematic diagram of the nanowire field effect tran-
sistor considered in this work. The channel and gate length, Lch and LG can
be, in general, different, but in this work Lch=LC. LS and LD are source and
drain length, respectively, and H and W are channel height and width,
respectively.
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UM�i� = ���1�i�	��2�i�	 ¯ ��NM
�i�	� , �11�

where NM is the number of modes that we select. We trans-
form the original Hamiltonian via

HM � UM
† HKUM , �12�

where

UM = �
UM�1�

UM�2�
UM�3�

�

UM�Nx�
� . �13�

Then,

HM = �
HM�1� WM�1�
WM

† �1� HM�2� WM�2�
WM

† �2� HM�3�
� WM�Nx − 1�

WM
† �Nx − 1� HM�Nx�

� , �14�

where

HM�i� = UM
† �i�HKUM�i� , �15�

WM�i� = UM
† �i�WKUM�i + 1� . �16�

If the unitary matrix UM�i� of the ith cross-section consists of
NM mode wavefunctions, i.e., if UM�i� is a NbNK�NM ma-
trix, the Hamiltonian HM becomes a NxNM �NxNM matrix.

C. Cross-section eigenvalue problems

Solving the eigenvalue problem in Eq. �10� for each
cross-sectional plane is demanding computationally, even if
we use the reduced-sized k-space Hamiltonian instead of
much bigger real-space Hamiltonian. We have therefore de-
vised a highly efficient way to solve the eigenvalue problem
as follows. Let us first define

h0 � H0K + WK + WK
† �17�

and Ū as the NbNK�NM unitary matrix which diagonalizes
h0,

Ū†h0Ū = D̄ , �18�

where D̄ is a NM �NM diagonal matrix. Recall that H0K is the
kinetic part of the Hamiltonian so h0 is independent of po-
tential. In the ith plane, we should solve the eigenvalue prob-
lem for

h�i� � HK�i� + WK + WK
† = h0 + VK�i� , �19�

that is,

UM
† �i�h�i�UM�i� = D�i� , �20�

where UM�i� and D�i� are the unitary matrices diagonalizing
h�i� and the resultant diagonal matrix, respectively. Instead
of directly diagonalizing h�i�, we make a unitary transforma-
tion as follows:

h̃�i� � Ū†h�i�Ū = D̄ + Ū†VK�i�Ū , �21�

and we diagonalize the transformed matrix h̃�i�. As an excel-
lent approximation, we diagonalize only the first NM �NM

submatrix of h̃�i� instead of the full matrix. That is, the prob-
lem now becomes finding NM eigenvectors from NM �NM

submatrix, instead of from NbNK�NbNK full matrix. Let us
denote as Ur�i� the NM �NM unitary matrix that diagonalizes
the submatrix. Then,

UM�i� = ŪUr�i� . �22�

The computation cost is therefore reduced by a factor pro-
portional to �NbNK /NM�r, where r is usually around 2.7 �the
number depends on the numerical algorithm that one uses�.
Since NM and NbNK in this work are typically 200 and 8
�200, respectively, a huge computational save can be
achieved. We note that, if a single-band parabolic effective-
mass �PEM� Hamiltonian is used instead of the multiband
KP Hamiltonian, the method described in this section is re-
duced to the project-space method for solving cross-sectional
Schrödinger equations for electrons.13

D. Selection of modes

The transformation matrix Ū in Eqs. �17� and �18� con-
sists of NM column vectors �=modes� which are wavefunc-
tions at k=0 of the nanowire dispersion relationship. For an
efficient simulation, NM should be as small as possible, with-
out losing accuracy in simulation at the same time. We there-
fore focused on the energy range of a few tenth of 1 eV from
the band edges where most of the charge transport takes
place and selected modes that are contained in the energy
range as follows.

We note that for a single-band PEM Hamiltonian, a
mode can be assigned to each subband. For the KP Hamil-
tonian, however, it is not possible because wavefunctions at
different k in the same subband are, in general, different. In
terms of the modes defined in this work, it means that a
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subband contains many modes; that is, we can expand the
wave function ��n�k�	 at k in the nth subband in terms of the
mode wave functions ��m	 as

��n�k�	 = 

m

anm�k���m	 , �23�

and, by calculating the magnitude of the coefficient anm�k�
= ��m ��n�k�	, we can identify the modes that constitutes the
particular subband. By inspecting the modes that are con-
tained in the subbands within the energy range of interest, we

select modes to be used for the matrix Ū, and using the
relationship in Eq. �22�, we determine the mode transforma-
tion matrix UM�i� for each cross section. In this way, one can
avoid choosing modes one after another starting from the
first mode, in which case a larger number of modes would be
needed.

We note that our mode-space approach becomes equiva-
lent to the so-called coupled mode-space approach when ap-
plied to n-type Si FETs using a single-band PEM
Hamiltonian3 and carbon nanotube FETs using a single-band
TB Hamiltonian.14 The so-called uncoupled mode-space ap-
proach where modes are treated as independent does not cor-
rectly produce subband structures and is not relevant to our
work here. Although our mode-space Hamiltonian is much
reduced in its size from the full Hamiltonian, it retains all the
features of the latter in the energy range we are interested in,
as will be discussed shortly in Sec. III A.

E. Simulation details

We have employed the nonequilibrium Green’s function
approach to solve the quantum ballistic transport problem
formulated in the mode space. At the start of the simulation,
we select the mode wavefunctions from the k-space Hamil-

tonian and construct the unitary matrix Ū of Eq. �18� as
described above. These steps are performed only once, even
when a voltage sweep is performed. Using the transforma-
tion matrix in Eq. �22�, the mode-space Hamiltonian of Eq.
�14� is constructed and fed into the procedure to obtain the
retarded Green’s functions. See Fig. 2. In this work, the re-
cursive Green’s function �RGF� method15 was used and the
contact self-energies were calculated using the method in
Ref. 16. In the electrostatic part, the 3D Poisson’s equation
with the following convergence scheme was solved,

�2�k = −
q

�
�ND + p3D

k e−��k−�k−1�/kBT − n3D
k e��k−�k−1�/kBT� ,

�24�

where �k, p3D
k , and n3D

k are the kth self-consistent-step solu-
tions for the potential, hole density, and electron density,
respectively, and ND is the doping profile. The fixed-value
boundary condition for the Poisson’s equation was used for
the gate contact region and the free boundary condition was
used for other boundaries including source/drain contacts.
After the self-consistent potential was obtained, the current
was calculated.

Note that we have performed the mode-space transfor-
mation from the k-space Hamiltonian. This has apparent dis-
advantage of having to perform UK

† VR�i�UK to transform the

real-space potential to k-space and to construct UKUM�i� for
transformation back to the real space. Overall, however, the
transformation from the k-space Hamiltonian is much more
efficient than the direct transformation from the real space
Hamiltonian because the matrix multiplications in Eqs. �15�
and �16�, in particular, significantly slow down the numerical
performance if the much bigger-sized real-space Hamiltonian
is used.

Since our simulator is based on the mode-space ap-
proach, its numerical efficiency is strongly dependent on the
number of modes being used. Table I shows an example of
measured wall time in one self-consistent cycle using a 32-
node, 3.0 GHz Intel cluster. It can be seen in the table that
total wall time increases as NM

� where ��2.3. The number
of modes being used is usually in the range of 100–200,
depending on the device type and its cross-sectional size: for
a Si nanowire pMOSFET with 5�5 nm2 channel cross sec-

Initial Potential

Construct H in K-space

Select Modes and
Construct Mode-space Basis (Eq. 18)

Solve Cross-sectional Eigenvalue
Problems (Eqs. 21, 22)

Construct H in Mode-space
(Eqs. 14-16)

Hm � RGF Routine ;
Calculate Charge Density

Charge Density � Poisson ;
Update Potential

Calculate Current

If Converged

If Not
Converged

FIG. 2. �Color online� Flowchart of the simulation.

TABLE I. Measured wall time in one self-consistent cycle using a 32-node,
3.0 GHz Intel cluster as a function of the number of modes �NM�. Numbers
are in units of seconds. The sample device for the wall-time measurement is
a Si nanowire PMOSFET with 5�5 nm2 channel cross section and 30 nm
device length and the 6�6 k · p Hamiltonian was used. The number of
energy points in the RGF routine was 16 per node, which is usually enough
for our nonuniform, adaptive energy-grid scheme.

Routines

NM

90 120 180 240

Cross-sectional eigenvalue problem 1.6 2.5 4.6 7.2
Mode-space Hamiltonian construction 16.7 26.1 53.6 91.0
RGF 27.5 61.4 193 430
Transformation back to real space 3.6 6.0 18.4 27.3
Poisson equation 8.8 8.8 8.8 8.8
Total 58 105 278 564
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tion and 30 nm device length, for instance, a gate-voltage
sweep with ten bias points can be finished in 5 h �wall time�
using the above-mentioned cluster.

III. RESULTS

A. Examination of the mode-space approach

In this section, we compare our mode-space solutions
against the full Hamiltonian solutions and show that our
mode-space approach correctly produces the desired results,
despite that the size of the mode-space Hamiltonian is much
smaller than that of the full Hamiltonian. We first would like
to mention why this verification of our mode-space approach
is necessary. For a single-band PEM Hamiltonian applied to
electrons in the conduction band, the use of the mode-space
Hamiltonian makes sense physically and can be well justi-
fied, and 10–20 coupled or uncoupled modes are sufficient
for a nanowire of 5�5 nm2 cross section. For the KP Hamil-
tonian applied to holes in the valence band, however, the use
of the mode-space approach as formulated in Sec. II is not as
obvious because the “modes” as we have defined in this
work rather correspond to the “choice of basis functions”
than to “subbands.” As previously pointed out, the concept of
modes and subbands are identical in the PEM case for elec-
trons, but they are not in the KP case for holes. Therefore, we
need to check whether our mode-space approach, which is in
essence to use only a subset from a complete basis set, works
indeed. We mean by our mode-space approach that the ap-
proximate method to solve the cross-sectional eigenvalue
problems described in Sec. II is also included. In the follow-
ing, we will demonstrate the comparison between the mode-
space and full Hamiltonian solutions in three stages: we will
first compare the valence subbands produced by the both
methods and then do the same for transmission in a BTBT
situation. We will finally compare the current-voltage char-
acteristics. What we mean by the “full solution” is that we
use the full k-space Hamiltonian in Eq. �5� which is directly
fed to the RGF procedure; the mode-space transformation is
not performed and hence solving the cross-sectional eigen-
value problems is not needed.

We first compare the nanowire subband structures gen-
erated by using the mode-space Hamiltonian and by using
the full Hamiltonian. As it should be, the subband structure
from the mode-space Hamiltonian becomes closer to that
from the full Hamiltonian as the number of modes being
used is increased, as can be seen in Fig. 3 where the valence-
band subband structures of Si �100� nanowire of 5�5 nm2

square cross section are shown. One can see in the figure that
with Nm=120, the subband profile produced by the mode-
space approach is quite close in shape to that from the full
solution, although there is some difference in detail. With
Nm=240, the two subband profiles are very close to each
other. We note that the subband structures shown in Fig. 3
are the ones obtained after tuning the KP parameters so that
the subband structures from KP and TB agree closely. The
KP parameters used are �1=3.55, �2=0.65, �3=1.26, and
�SO=0.044. Details of such tuning will be published else-
where.

We next compare the transmission calculated from using
the mode-space Hamiltonian and from using the full Hamil-
tonian. In Fig. 4, the transmission T�E� in a BTBT condition
as a function of energy E is shown for an InAs nanowire
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FIG. 3. Valence subband structures of a Si �100� nanowire of 5�5 nm2

cross section using the mode-space Hamiltonian with �a� 30, �b� 60, �c� 120,
�d� 180, and �e� 240 modes and �f� the full k-space Hamiltonian. In �a�–�e�,
the full-Hamiltonian subbands are overlaid �dashed lines�. The energy is
referenced to the Si midgap �0.56eV from the bulk valence-band edge�.
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tunnel FET whose conduction and valence band profiles are
shown in the figure. The device is 20 nm long and has cross
section of 5�5 nm2, and its source and drain are p-doped
and n-doped, respectively, with the doping density of 5
�1019 cm2. As can be seen in the figure, Tmode�E� of the
mode-space Hamiltonian is already quite close to Tfull�E� of
full Hamiltonian when total 144 modes �24 modes for con-
duction band and 120 modes for valence band� are used for
the mode-space Hamiltonian. When total 276 modes �36
modes for conduction band and 240 modes for valence band�
are used, Tmode�E� nearly overlaps with Tfull�E�, and the tun-
neling current values, which can be obtained by integrating
T�E� after multiplying it with the difference of the source
and drain Fermi functions, differ by a few tenth of 1%.

Finally, we compare the current-voltage characteristics
self-consistently calculated from using the full and mode-
space Hamiltonians, respectively. For this, we have used a
3�3 KP Hamiltonian without the spin-orbit �SO� coupling
because with SO turned on �6�6 KP Hamiltonian�, the full
solution requires a huge amount of memories and very long
simulation time. The SO-off model still captures all the cou-
pling effects among different modes, so it can as well serve
our purpose of benchmarking the mode-space solution with
the full solution. Figure 5 shows the results for a Si p-type
nanowire FET with 10 nm channel length and 5�5 nm2

cross section. The drain voltage Vd=0.5 V and the gate volt-
age Vg is varied from 0.2 to −0.2 V. See inset �b� for the
potential-profile change to the gate voltage. As can be seen in
Fig. 5, the drain current Imode�NM� from using the mode-
space Hamiltonian with number of mode NM approaches the
drain current Ifull from using the full Hamiltonian as NM is
gradually increased and Imode�120� almost overlaps with Ifull.

At Vg=−0.2 V, in particular, the relative errors of Imode�NM�
with respect to Ifull are around 7%, 3%, 1%, and 0.3% for
NM =30, 60, 90, and 120. See inset �a�. Note that the currents
in the figure were self-consistently calculated, starting with
the same initial best-guessed potential at Vg=0.2 V and
gradually increasing the gate voltage up to −0.2 V.

Having shown that our mode-space approach indeed
works, with mode numbers ranging from 100 to 200 being
sufficient to produce practically identical results to the full
solution, we demonstrate in the next subsections the capabil-
ity of our KP-based simulator by taking two important ex-
ample systems, Si p-type nanowire FET and III-V nanowire
tunnel FET.

B. Hole currents in Si nanowire p-FETs

We demonstrate in Fig. 6 simulation results for Si nano-
wire p-FETs with 5�5 nm2 cross section. The 6�6 KP
Hamiltonian with SO turned on was used. The source and
drain are n-doped with density of 1020 cm−3, the channel is
intrinsic, the oxide thickness is assumed to be 1 nm, and the
type of the gate is gate all around �GAA�. Three channel
lengths �5, 10, and 20 nm� and three transport directions
��100�, �110�, and �111�� were considered. In the long chan-
nel �20 nm� cases, the subthreshold slope �SS� for all the
three orientations reaches the theoretical limit of
60 mV /decade. SS increases for shorter channel lengths, as
expected. For L=10 nm, SS=68 mV /decade for all three di-
rections, whereas for L=5 nm, SS=102, 122, and
129 mV /decade for the �100�, �110�, and �111� directions,
respectively, which implies that the �100� direction is slightly
less susceptible to the channel-length scaling than other two
directions. The magnitude of the on currents are in the order
I111� I110� I100, which is consistent with the results in Ref.
17, although I111 and I110 are very close to each other for the
same OFF current.

In Fig. 6, we can also find that the threshold voltage for
shorter channel is shifted toward smaller �negatively� gate
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voltage, as in the case of n-type Si nanowire FETs.18 For the
�100� direction, for instance, the threshold voltage shifts for
L=10 and 20 nm with respect to L=20 nm are 43 and
193 mV, respectively. After shifting the current curves such
that the threshold voltages coincide, the on currents of the
different channel lengths become almost the same, as they
should be because of the assumed ballistic nature of the
transport.

Our KP simulator is capable of simulating devices with
relatively large cross section and long channel. Figure 7
shows the cross-sectional charge densities in p-type Si nano-
wire FETs with 10�10 nm2 cross section and 40 nm chan-
nel length, for Si orientations �100�, �110�, and �111�, respec-
tively. Simulations were performed with SO turned off
because SO plays a minor role in devices with relatively
large cross sections. The charge densities were drawn at the
top of the barrier in the On state �the gate voltage of −0.3 V
was applied�. The charge density distributions agree well
with those by the top of the barrier model using the atomistic
TB model.17

C. BTBT in III-V nanowire FETs

As an important application of our KP simulator, we
now demonstrate BTBT in a p-i-n InAs nanowire tunnel
FET. The 8�8 KP Hamiltonian was used in the simulation.
The example device has the n-doped source and p-doped
drain, each with doping density of 5�1019 cm−3. The chan-
nel is intrinsic, the cross section is 5�5 nm2, the oxide
thickness is assumed to be 1 nm, and gates are GAA. The

drain voltage of 0.3 V is applied. Figure 8�a� shows the
BTBT currents for the three channel lengths, 5, 10, and
20 nm. SS for L=20 nm is about 20 mV /decade, which is
much less than the 60 mV /decade limit of the conventional
MOSFETs, but as the channel length is reduced, SS sharply
increases; for L=10 nm, SS increases to about
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90 mV /decade. In the insets �b� and �d� are shown BTBT
conditions at the gate-bias voltages of −0.25 and 0.95 V,
respectively, which correspond to the saturated state in the
left and right branches, respectively. At Vg=−0.25 V, elec-
trons near the conduction band edge tunnels into the valence
band, whereas at Vg=0.95 V, holes near the valence band
edge tunnels into the conduction band. As can be seen in the
insets, the interband tunneling distances for the three differ-
ent channel lengths are all the same, leading to the same
saturation currents regardless of the channel length. At Vg

=0.35 V where the current is minimum, the tunneling dis-
tance becomes shorter in proportion to the channel-length
reduction, as shown in the inset �b�, resulting in higher mini-
mum currents and higher SS as well. Due to the asymmetry
between the conduction and valence band, the ambipolar cur-
rents are not symmetrical around the current minimum. It is
observed in the figure that the hole-tunneling branch gives
rise to stiffer rise of currents.

IV. CONCLUSIONS

We have developed a practical, full-quantum nanowire
FET simulator based on the eight-band KP theory and dem-
onstrated its capability. We have shown detailed steps for
construction of real-space, k-space, and mode-space KP
Hamiltonians suitably discretized for transport simulation in
3D nanowires. In particular, we have elaborated on definition
of the mode-space basis and systematic selection of modes.
We have quite thoroughly examined the validity of our
mode-space approach by comparing the results from using

the mode-space Hamiltonian and from using the full Hamil-
tonian. We have found that, with number of modes ranging
from 100 to 200, our mode-space approach faithfully repro-
duces solutions from full Hamiltonian. This, together with
our efficient way to solve the cross-sectional eigenvalue
problems, enabled us to develop highly efficient, practical
full-quantum simulator that can treat both the conduction and
valence bands. Our KP simulator has clear advantage over
the TB based quantum transport simulators in terms of the
size of the device that can be considered by the tool and the
computational speed: the cross section of a p-type Si nano-
wire FET can be readily treated up to 10�10 nm2 and a full
current-voltage sweep for a typical-sized device can be fin-
ished within a few hours using a small cluster computer. The
simulator described here will be uploaded to nanoHUB and
open to public.19
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APPENDIX A: K ·P HAMILTONIAN
The 8�8 KP Hamiltonian is given by20,21

HKP�kx,ky,kz� = H0,KP�kx,ky,kz� + VKP, �A1�

where

H0,KP = �
C 0 − P+


2 0 
2/3Pz P−/
6 Pz/
3 P−/
3

cc C 0 P−/
2 − P+/
6 
2/3Pz P+/
3 − Pz/
3

cc cc − P − Q 0 S − R S/
2 − 
2R

cc cc cc − P − Q − R* − S* 
2R* S*/
2

cc cc cc cc − P + Q 0 
2Q − 
3/2S

cc cc cc cc cc − P + Q − 
3/2S* − 
2Q

cc cc cc cc cc cc − P − �SO 0

cc cc cc cc cc cc cc − P − �SO

� , �A2�

where

C =
�2

2m0
�c�kx

2 + ky
2 + kz

2� , �A3�

P =
�2

2m0
�1�kx

2 + ky
2 + kz

2� , �A4�

Q =
�2

2m0
�2�kx

2 + ky
2 − 2kz

2� , �A5�

R = −
�2

2m0


3��2�kx
2 − ky

2� − 2i�3kxky� , �A6�

S =
�2

2m0
2
3�3�kx − iky�kz, �A7�

P	 = P0�kx 	 iky� , �A8�

Pz = P0kz, �A9�

where
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�c =
1

m
c
* −

EP

3
� 2

Eg
+

1

Eg + �SO
� , �A10�

�1 = �1
L − EP/�3Eg + �SO� , �A11�

�2 = �2
L − EP/�6Eg + 2�SO� , �A12�

�3 = �3
L − EP/�6Eg + 2�SO� , �A13�

P0 = 
EP�2/2m0, �A14�

where �i
L where i=1,2 ,3 are Luttinger parameters, �SO is

the SO splitting energy, Eg is the band gap, EP is a band-
mixing parameter, and m

c
* is the conduction band effective

mass. In Eq. �A1�,

VKP = �ECI2�2 0

0 EVI6�6
� , �A15�

where EC and EV are conduction and valence band edges,
respectively, and In�n is an n�n identity matrix.

APPENDIX B: THE K ·P HAMILTONIAN DISCRETIZED
IN THE K-SPACE

The Hamiltonian HR in Eq. �2� discretized in the real
space can be transformed to k-space via a unitary transfor-
mation as follows:

HK = UK
† HRUK, �B1�

where

UK = �
UK

UK

UK

�

UK

� , �B2�

where UK is an unitary matrix which is a block matrix with
blocks of size Nb�Nb; its �M ,L� block �UK�ML is given by

�UK�ML =
2


NyNz

sin�k�L,r�M�INb�Nb
, �B3�

where

sin�k�L,r�M� � sin�kpym�sin�kqzn� �B4�

and

k�L = � p


Ly
,
q


Lz
� �B5�

is the Lth grid point in the k-space �where 1� p�Ny and 1
�q�Nz� and Ly and Lz are device length in the y and z
directions, respectively, and

r�M = �ym,zn� �B6�

is the Mth grid point in the real space �on the cross-sectional
plane�, where M = �m−1�Nz+n, where 1�m�Ny and 1�n
�Nz. HK in Eq. �B1� can be written as in Eqs. �5�–�9�.

The block �L ,L�� of H0K in Eq. �8�, where L and L�
index the k-space grid points �1�L ,L��NyNz�, is an Nb

�Nb matrix given by

�H0K�LL� =
4

NyNz


M=1

NyNz



M�=1

NyNz

sin�k�L,r�M�

��H0R�MM� sin�k�L�,r�M�� , �B7�

where �H0R�MM� which is an Nb�Nb matrix is the element
�M ,M�� of H0R in Eq. �3�, where M and M� index the real-
space grid points.

To evaluate Eq. �B7� analytically, we take the limit
where the real space mesh size goes to zero and Ny ,Nz→�.
Alternatively, one can directly take the KP Hamiltonian in
Eq. �A2� with kx discretized in the real space as usual and
ky�z� replaced by the operator −i� /�y�z�, multiply it with
2 /
LyLz sin�k�L ,r�� to its left and with 2 /
LyLz sin�k�L� ,r�� to
its right where r�= �y ,z�, and integrate over y and z over the
device region.

For Nb=8, the 8�8 matrix �H0K�LL� has the same ele-
ments as the 8�8 matrix H0,KP in Eq. �A2� but C, P, Q, etc
are replaced as follows:

CLL� =
�2

2m0
�c� 2

��x�2 + kp
2 + kq

2�
p,p�
q,q�, �B8�

PLL� =
�2

2m0
�1� 2

��x�2 + kp
2 + kq

2�
p,p�
q,q�, �B9�

QLL� =
�2

2m0
�2� 2

��x�2 + kp
2 − 2kq

2�
p,p�
q,q�, �B10�

RLL� = −
�2

2m0


3�2� 2

��x�2 − kp
2�
p,p�
q,q�, �B11�

SLL� = i
�2

2m0
2
3�3�4kp�




p

p2 − p�2
p+p�,odd�
��4kq�




q

q2 − q�2
q+q�,odd� , �B12�

�P	�LL� = 	 P0�4kp�




p

p2 − p�2
p+p�,odd� , �B13�

�Pz�LL� = − iP0�4kq�




q

q2 − q�2
q+q�,odd� , �B14�

where �x is the grid spacing in the transport direction, where
�p ,q� and �p� ,q�� are the coordinates of the k-space grid
points L and L�, respectively, as given by Eq. �B5�. In the
above equation, 
p+p�,odd means that the value is 1 if p+ p� is
an odd integer or 0 otherwise.

The element �WK�LL� of WK in Eq. �7� can be evaluated
similarly and has the following terms:

CLL� = −
�2

2m0
�c

1

��x�2
p,p�
q,q�, �B15�
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PLL� = −
�2

2m0
�1

1

��x�2
p,p�
q,q�, �B16�

QLL� = −
�2

2m0
�2

1

��x�2
p,p�
q,q�, �B17�

RLL� =
�2

2m0
�
3�2

1

��x�2
p,p�

− i2
3�3
1

2�x

4kp�




p

p2 − p�2
p+p�,odd�
q,q�, �B18�

SLL� = −
�2

2m0
2
3�3

1

2�x
�4kq�




q

q2 − q�2
q+q�,odd�
p,p�,

�B19�

�P	�LL� = � iP0
1

2�x

p,p�
q,q�, �B20�

�Pz�LL� = 0. �B21�

An extra care should be taken for conjugates of P	 and
Pz in the discretized matrix. For instance, in �WK�LL�,

�P	
† �LL� = �P	�LL� = � iP0

1

2�x

p,p�
q,q�, �B22�

which stems from the fact that kx
†=kx or �−i�� /�x��†=

−i�� /�x�.
To numerically evaluate VK�i� in Eq. �9�, one can either

use a fast Fourier transform �FFT� for an uniform y-z grid or
directly multiply the matrices for a nonuniform grid. For the
latter, the prefactor of �UK�ML in Eq. �B3� should be replaced
with

2

NyNz

→
2


LyLz


�ym

�zn, �B23�

where �ym and �zn are grid spacing at ym and zn, respec-
tively. If one judiciously use a matrix multiplication routine
such as the one provided in LAPACK and optimized for a
given computer platform, a fast computation, compatible
with the speed of FFT, can be achieved.

APPENDIX C: SIZE REDUCTION OF K-SPACE
HAMILTONIAN

When constructing the k-space Hamiltonian matrices in
Eqs. �6� and �7�, a simple scheme to index grid points in the
k-space would be such that index L simply increases as

L = L�p,q� = �p − 1�Nz + q , �C1�

where 1�q�Nz and 1� p�Ny as before. In this work, we
have chosen a different indexing scheme as follows. We
evaluate the magnitude �k�L� at each k-space grid point L,

�k�L�2 = � p


Ly
�2

+ �q


Lz
�2

, �C2�

and reorder index L such that �k�L�2 is in the increasing order.
The simple indexing scheme corresponds to moving row by

row in the k-space, while our scheme corresponds to cover-
ing grid points such that the distance from the origin gradu-
ally increases, as illustrated in Fig. 9.

We draw a vector in the k-space whose magnitude is �k�C�
as shown in Fig. 9 and denote by NK the number of the grid
points whose, distance from the origin is smaller than �k�C�.
Instead of using the total NyNz grid points, we select to use
smaller NK grid points, i.e., 1�L�NK. Then the sizes of the
k-space matrices in Eqs. �6� and �7� become NbNK�NbNK

instead of NbNyNz�NbNyNz.
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