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Abstract— In this paper, we focus on a packet scheduling
algorithm exploiting multiuser diversity in wireless networks.
We compare the delay performance of individual user under
the scheduling algorithm exploiting multiuser diversity with that
under the round-robin scheduling algorithm in order to reveal the
characteristics of the scheduling algorithm exploiting multiuser
diversity. For this purpose, we develop an approximate formula to
estimate the tail distribution of packet delay for an arbitr ary user
under the scheduling algorithm exploiting multiuser diversity
and that under the round-robin scheduling algorithm. Numerical
results exhibit that in contrast to the throughput performance of
the overall system, the scheduling algorithm exploiting multiuser
diversity is not necessarily superior to the round-robin scheduling
algorithm for the delay performance of individual user. More
specifically, it is shown that the former is superior to the latter
only when the system lies in a severe environment, e.g., when
the arrival rate is large, the burstiness of the arrival process is
strong or the average signal-to-noise ratio is low.

Index Terms— Multiuser diversity, Queueing delay analysis,
Packet scheduling, Quality of service (QoS)

I. I NTRODUCTION

With rapid adoption of wireless technology combined with
the explosive growth of the Internet, it is promised that
demand for wireless data services is continuously increasing.
Traffic for wireless data services is expected to be a mix of
real-time multimedia traffic such as multimedia conferencing
and non real-time data traffic such as file transfers. In such
a multiservice wireless environment, providing quality-of-
service (QoS) such as delay and packet loss rate is critical
for real-time traffic. This requirement, however, imposes a
challenging issue in the design of wireless networks, because
wireless channels have low reliability, and time varying signal
attenuation (fading), which may cause severe QoS violations.
In addition, the available bandwidth of wireless channel is
severely limited. Therefore, scheduling or control for efficient
bandwidth utilization is a key component to the success of
QoS guarantees in wireless networks.

One way to achieve efficient bandwidth utilization of time-
varying wireless channel is to exploit diversity. By using
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multiple independent signal paths yielded by diversity, higher
channel capacity between the transmitter and the receiver can
be achieved. Knopp and Humblet [1] introduced multiuser
diversity, which is a diversity existing between the channel
states of different users. This diversity comes from the fact
that the wireless channel state processes of different users are
usually independent for the same shared medium.

Recently several researchers have studied scheduling algo-
rithms or control exploiting multiuser diversity (see, e.g., [2]–
[4]), and they have reported that the utilization of multiuser
diversity can substantially increase the information theoretic
capacity or maximum throughput of theoverall system. Con-
trary to these studies, Wu and Negi [5] focus on the delay
performance of users under scheduling algorithms exploit-
ing multiuser diversity as the problem of QoS provisioning
in wireless networks. They consider the problem of QoS
provisioning for K users over time-slotted Rayleigh fading
down-link channel. They then develop an efficient scheduling
algorithm which is a simple combination of the Knopp and
Humblet (KH) scheduling, which exploits multiuser diversity,
and the round-robin (RR) scheduling, which does not use
multiuser diversity at all. Note here that contrary to the
information theoretic capacity or maximum throughput of the
overall system, the delay performance of individual user under
the KH scheduling is not necessarily superior to that under the
RR scheduling, because the RR scheduling is able to guarantee
that a user can be served at everyK slots whereK denotes the
number of users while the KH scheduling is not. By estimating
the tail distribution of delay in afluid queueing model by
the technique developed in [6], their scheduling determines
the optimal combination of the KH scheduling and the RR
scheduling in advance. Although their technique is applicable
to general physical layer channel models, the observation of
the (actual or simulated) queueing dynamics at link layer is
needed to predict the asymptotic constant and the asymptotic
decay rate for the tail distribution of delay. Simulation results
show that their approach can substantially increase the delay-
constrained capacity of a fading channel, compared to the RR
scheduling, when delay constraints are not very tight.

In this paper, we focus on a packet scheduling algorithm
exploiting multiuser diversity in wireless networks. In partic-
ular, we consider the CKH scheduling algorithm, which most
coarsely utilizes multiuser diversity and is considered asthe
most coarse version of KH scheduling, and we compare the
packet delay performance of individual user under the CKH
scheduling with that under the RR scheduling. It is expected



that queueing models withpacket-by-packetscheduling are
more suitable for the performance evaluation of scheduling
algorithms than fluid queueing models, although fluid queue-
ing models are tractable. The reason is that multiple users are
simultaneously served in fluid queueing models while users
are served under packet-by-packet scheduling in real networks.
Contrary to the previous studies [5], [6], we therefore con-
sider a discrete-time queueing model (with packet-by-packet
scheduling) in this paper. We assume that the wireless channel
process for each user is described by the Nakagami-m channel
model [7] and we determine the effective bandwidth function
of the service process under the CKH scheduling and that
under the RR scheduling. We then analyze a discrete-time
queueing model based on the theory of effective bandwidth.
Based on the analytical results, we develop an approximate
formula to estimate the tail distribution of packet delay for an
arbitrary user under the CKH scheduling and that under the RR
scheduling. Finally we provide numerical results to compare
the delay performance under the CKH scheduling with that
under the RR scheduling.

The main contribution of this paper is to reveal the char-
acteristics of the scheduling algorithm utilizing multiuser
diversity in the delay performance of individual user, through
the numerical comparison between the delay performance
under the CKH scheduling and that under the RR scheduling.
Although an extensive numerical study to understand the
characteristics of scheduling algorithm exploiting multiuser
diversity in the delay performance is strongly needed, it has not
been made due to the lack of analytical results. Our formulas
developed in this paper are suitable for the numerical study,
because contrary to the previous study [5], our formulas do
not need the observation of the (actual or simulated) queueing
dynamics to estimate the delay performance.

The remainder of this paper is organized as follows. Section
II describes models studied in this paper. In Section III,
we introduce the notion of effective bandwidth and present
the analysis of our models based on the theory of effective
bandwidth. Based on the analytical results, we develop a
formula to estimate the tail distribution of packet delay for
an arbitrary user under the CKH scheduling and that under
the RR scheduling. Section IV provides numerical results to
compare the delay performance under the CKH scheduling
with that under the RR scheduling. Conclusion is drawn in
Section V.

II. SYSTEM MODEL

We begin with the description of the system model. Fig.
1 shows the system model for multiuser traffic over wireless
channel. We assume that in the model, time is divided into
equal intervalsTf referred to as slots and the service time of
a packet is equal to one slot. The model can be considered
as a down link in a cellular wireless network where a base
station transmits data toK (K ≥ 1) mobile user terminals.

A. Channel Model

We assume that the wireless channel process for each user
is described by the general Nakagami-m model [7]. The
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Fig. 1. System model for multiuser traffic

Nakagami-m model is applicable to a broad class of fading
channels. It includes the Rayleigh channel as a special case
when the Nakagami fading parameterm = 1. Also it well
approximates the Ricean channels by one-to-one mapping be-
tween the Ricean factorK and the Nakagami fading parameter
m [7].

Let {Z(k)
n }∞n=0 denote the wireless channel process for the

kth (k = 1, . . . , K) user whereZ
(k)
n denotes the received

signal-to-noise ratio (SNR) for thekth user at the beginning of
thenth slot. We assume that all the wireless channel processes
are independent with each other and they are stationary. We
also assume that the wireless channel processes are homoge-
neous in their parameters.

Suppose that for the utilization of multiuser diversity, the
scheduler partitions the entire SNR range intoL grades with
boundary points denoted by{γl}L

l=0 with γ0 = 0, γl < γl+1

(l = 0, . . . , L − 1) andγL = ∞. For k = 1, . . . , K andn =
0, 1, . . ., we define a random variableL(k)

n onL = {0, . . . , L−
1} by L

(k)
n = l if γl ≤ Z

(k)
n < γl+1. L

(k)
n is considered as the

channel grade of thekth user in thenth slot when the number
of grades isL, and L may be considered as the granularity
of the measured SNR or the granularity of the utilization of
multiuser diversity.

As in [8], we assume that the channel grade process
{L(k)

n }∞n=0 (k = 1, . . . , K) is well described by a finite-state
Markov chain (FSMC). The state transitions of the FSMC
happen only between adjacent states. Under slow fading
conditions and a small value ofTf , this assumption is natural.
Let P = (pi,j) (i, j ∈ L) denote the transition matrix of the
FSMC. The transition probabilities are determined as follows
(for the detailed derivation of the transition probabilities, see
[8]). From the assumption made in this subsection, fori, j ∈
L, we have

pi,j = 0, |i − j| ≥ 2. (1)

The adjacent-state transition probabilities are determined by
[9]

pi,i+1 =
χ(γi+1)Tf

πi
, i = 0, . . . , L − 2, (2)

pi,i−1 =
χ(γi)Tf

πi
, i = 1, . . . , L − 1, (3)

whereχ(γ) denotes the level cross-rate (LCR) at an instanta-



neous SNRγ in the Nakagami-m model and it is given by

χ(γ) =

√
2πfd

Γ(m)

(
mγ

γ

)m− 1

2

exp

(

−mγ

γ

)

.

Here, fd denotes the mobility-induced Doppler spread,
γ = E[γ] is the average received SNR,Γ(m) =
∫ ∞

0 tm−1 exp(−t)dt is the Gamma function, andπi (i ∈ L)
denotes the stationary probability that the FSMC is in statei
and it is given by

πi =
Γ(m, mγi/γ) − Γ(m, mγi+1/γ)

Γ(m)
, (4)

whereΓ(m, x) =
∫ ∞

x tm−1 exp(−t)dt is the complementary
incomplete Gamma function. With the normalizing condition
∑L−1

j=0 pi,j = 1 for all i, (1), (2) and (3) yield

pi,i =







1 − pi,i+1 − pi,i−1 (i = 1, . . . , L − 2),
1 − pi,i+1 (i = 0),
1 − pi,i−1 (i = L − 1).

(5)

(1), (2), (3) and (5) determine the transition matrixP of the
FSMC, whose stationary distribution is given by (4).

B. Utilization of Multiuser Diversity

In this subsection, we describe the scheduler employing
the Knopp and Humblet (KH) scheduling. Since the channel
processes of the users are assumed to be independent with
each other, we can potentially utilize multiuser diversity. Under
the KH scheduling, the base station is assumed to know the
current value of the channel gradeL(k)

n for all k. In order
to increase the capacity of the overall system with multiuser
diversity, among all the users, the scheduler first selects users
whose channel grades are the highest, i.e., users whose channel
grades are equal toτ∗

n whereτ∗
n (n = 0, 1, . . .) is defined by

τ∗
n = max

k∈{1,...,K}
L(k)

n .

Among the selected users, the scheduler randomly selects one
user and assigns the slot to transmit the packet of the selected
user. However, to avoid deep channel fades, packet will not be
transmitted ifL(k)

n = 0 for all k. We assume that ifL(k)
n > 0,

packets are always successfully transmitted over the wireless
channel and correctly received at the user.

For comparison, we also consider a scheduler employing
the round-robin (RR) scheduling, which does not utilize mul-
tiuser diversity at all. It assigns a slot for the users in turn,
irrespective of the wireless channel processes.

C. Queueing Models

In this subsection, we consider the queueing dynamics at
the buffer of an arbitrary user under the KH scheduling and
those under the RR scheduling. Without loss of generality, we
assume that the first user is an arbitrary user, and we hereafter
call the arbitrary user the tagged user.

First we describe the queueing behavior at the buffer of the
tagged user under the KH scheduling. LetXn (n = 0, 1, . . .)
denote a random variable representing the queue length (i.e.,
the number of packets in the buffer of the tagged user) at the

beginning of thenth slot. Let An (n = 0, 1, . . .) denote a
random variable representing the number of packets arriving
at the buffer of the tagged user in thenth slot. Let Cn

(n = 0, 1, . . .) denote a random variable representing the
number of packets which can be served at the buffer of the
tagged user in thenth slot under the KH scheduling. We
here define an auxiliary i.i.d. (independent and identically
distributed) stochastic sequence{Vn}∞n=0 according to the
uniform distribution on[0, 1]. We also define a random variable
ν∗

n (n = 0, 1, . . .) by ν∗
n =

∑K
k=1 I(L

(k)
n = τ∗

n) where
I(·) denotes the indicator function. Note thatν∗

n denotes the
number of users (including the tagged user) being in the
highest grade in thenth slot. Cn (n = 0, 1, . . .) is then given
by

Cn =

{

1 (L
(1)
n = τ∗

n > 0 andVn ≤ 1/ν∗
n),

0 (otherwise),
(6)

We are now ready to describe the queueing dynamics at
the buffer of the tagged user under the KH scheduling. The
queueing process{Xn}∞n=0 at the buffer of the tagged user
evolves according to the following recursion:

Xn+1 = (Xn − Cn)+ + An, (7)

where (x)+ denotesmax(0, x). Note that{Cn} becomes a
stationary Markov modulated process, because{L(k)

n } (k =
1, . . . , K) are stationary Markov chains and{Vn} is an i.i.d.
sequence.

Next we describe the queueing behavior at the buffer of the
tagged user under the RR scheduling. The queueing process
at the buffer of the tagged user under the RR scheduling
also follows the same recursion (7), butCn under the RR
scheduling is given by

Cn =

{

1 (L
(1)
n > 0 andn mod K = 0),

0 (otherwise).
(8)

Note that {Cn} under the RR scheduling also becomes a
stationary Markov modulated process, because{L(1)

n } is a
stationary Markov chain.

At closing this section, we consider the maximum through-
put of the tagged user under the saturation condition that there
always exists a packet at the buffer of the tagged user. From
(6), the maximum throughputsKH of the tagged user under
the KH scheduling is given by

sKH = E[Cn]

=

L−1∑

l=1

K∑

m=1

P(Cn = 1, τ∗
n = L(1)

n = l, ν∗
n = m)

=

L−1∑

l=1

K∑

m=1

P(Cn = 1|τ∗
n = L(1)

n = l, ν∗
n = m)

·P(L(1)
n = l, L(2)

n ≤ l, · · · , L(K)
n ≤ l, ν∗

n = m)

=

L−1∑

l=1

K∑

m=1

1

m

(
K − 1

m − 1

)

πm
l (

l−1∑

j=0

πj)
K−m

=
1

K

L−1∑

l=1

K∑

m=1

(
K

m

)

πm
l (

l−1∑

j=0

πj)
K−m



=
1

K

L−1∑

l=1



(

l∑

j=0

πj)
K − (

l−1∑

j=0

πj)
K





=
1

K
(1 − πK

0 ). (9)

On the other hand, from (8), the maximum throughputsRR of
the tagged user under the RR scheduling is given by

sRR = E[Cn] =
1

K
(1 − π0). (10)

Comparing (9) and (10), we see thatsKH is always greater
than sRR and the multiuser diversity gainsKH/sRR for the
maximum throughput is given by

sKH

sRR
=

1 − πK
0

1 − π0
. (11)

From (11), we see that when the condition of the wireless
channel is not good, the multiuser diversity gain for the
maximum throughput is greater. A similar discussion has been
made in [5].

III. A NALYSIS BASED ON EFFECTIVE BANDWIDTH

In this section, we present the analysis based on the theory
of effective bandwidth. The theory of effective bandwidth has
been extensively studied for wireline packet networks and
has been widely accepted as a basis of connection admission
control (CAC) and resource allocation (for detailed and theo-
retical descriptions of the effective bandwidth approach,see,
e.g., [10], [11] and references therein). Recently the theory
of effective bandwidth has been studied for wireless packet
networks, too (see, e.g., [5], [6], [12]–[15]).

To keep the presentation of the analysis compact, we assume
in the analysis thatL = 2, i.e., the scheduler most coarsely
utilizes multiuser diversity. Assuming that the PER (packet
error rate) is determined by encoding scheme and received
SNR as shown in [16], we select the boundaryγ1 such that
the PER is negligible when the received SNR is greater than
γ1. Then, we may consider that the packet transmission is
always successful when the received SNR is greater thanγ1.
Accordingly, the choice ofL = 2 in the analysis is natural in
practice, and it is at least acceptable for the purpose to under-
stand the characteristics of the scheduling algorithm exploiting
multiuser diversity. Hereafter we call the KH scheduling with
L = 2 the CKH scheduling (most Coarse version of the KH
scheduling).

A. EBF of Arrival Process

We begin with the notion of the Gärtner-Ellis (GE) limit
(or the asymptotic decay rate function). LetΛA(θ) denote
the GE limit for cumulative arrival process̃An of general
arrival process, wherẽAn is the input of work from the source
during the time interval[0, n). ΛA(θ) is defined byΛA(θ) =
limn→∞ n−1 log E exp(θÃn), provided that the limit exists.
We then define the functionξA(θ) of θ by ξA(θ) = ΛA(θ)/θ,
which is called theeffective bandwidth function(EBF) of the
arrival process. It is known (see. e.g., [10]) that the EBFξA(θ)
is increasing inθ, and it converges to the average rate of the

arrival process asθ ↓ 0 and to the peak rate of the arrival
process asθ ↑ ∞.

We now return to our model. In this paper, we assume
that the arrival process{An}∞n=0 is generated by an on-off
source, which can incorporate the bursty behavior of the arrival
process. In any slot, the on-off source is in one of the two
different states: on-state and off-state. In off-state, itdoes not
generate a packet, and in on-state, it generates one packet with
probability λ. The transition probability from on-state (resp.
off-state) to off-state (resp. on-state) is denoted by1−α (resp.
1 − β), where0 ≤ α, β ≤ 1. The following parameters are
used to characterize the on-off source: the mean on-period
Bon, the mean off-periodBoff and the average rateρ. These
parameters are expressed in terms ofα, β andλ as follows:

Bon =
1

1 − α
, Boff =

1

1 − β
, ρ =

λ(1 − β)

2 − α − β
.

It is known that the GE limitΛA(θ) of the arrival process in
our model and its EBFξA(θ) are given by (see, e.g., [10])

ΛA(θ) = log δA(θ), ξA(θ) =
log δA(θ)

θ
, (12)

where δA(θ) is given by δA(θ) = ζ(θ) +
√

ζ(θ)2 − bφ(θ),
φ(θ) = 1−λ+λeθ, ζ(θ) = (αφ(θ)+β)/2, andb = α+β−1.
Although we assume that{An}∞n=0 is generated by the on-off
source, the analysis presented in this section is applicable to
any arrival processes whose GE limits exist.

B. EBF of Service Process under CKH Scheduling

In this subsection, we first define the notion of the EBF for
general service processes. We then provide a useful expression
for the GE limit for the service process under the CKH
scheduling and that for its EBF.

We start with the GE limit for general service process. Let
C̃n (n = 0, 1, . . .) denote a random variable representing the
cumulative service process during the time interval[0, t). Let
ΛC(θ) denote the GE limit of the cumulative service process
C̃n. Similar to the GE limit for the arrival process,ΛC(θ) is
defined byΛC(θ) = limn→∞ n−1 log E exp(θC̃n), provided
that the limit exists. We now define the functionξC(θ) of θ
by

ξC(θ) = −ΛC(−θ)

θ
, (13)

which is called the EBF of the service process. Note here that
from the definition (13), we haveΛ−C(θ) = ΛC(−θ), where
Λ−C(θ) denote the GE limit of−C(t). Thus, the EBF of the
service process can be also written asξC(θ) = −Λ−C(θ)/θ
[10]. It is known (see. e.g., [15]) that the EBFξC(θ) is
decreasing inθ, and it converges to the average service rate
asθ ↓ 0 and to the minimum service rate asθ ↑ ∞.

We now return to our model. Note that under the CKH
scheduling and the homogeneous wireless channel setting, the
service process{Cn} is a Markov modulated process whose
underlying Markov chain is{(L(1)

n , Sn)} whereSn is defined
by Sn =

∑K
k=2 L

(k)
n for all n. To show a useful expression for

the GE limit and EBF of the service process under the CKH



scheduling in our model, we need to define some matrices.
We first define aK × K matrix R by

[R]i,j =

min(i,j)
∑

k=max(0,i+j−K+1)

(
i

k

)

pk
1,1p

i−k
1,0

·
(

K − 1 − i

j − k

)

pj−k
0,1 pK−1−i−j+k

0,0 ,

where[R]i,j (i, j = 0, . . . , K−1) denotes the(i, j)th element
of R. Note that[R]i,j denotes the conditional probability that
j channel grade processes among the(K − 1) channel grade
processes are in state 1 in the current slot given thati channel
grade processes among the(K − 1) channel grade processes
were in state 1 in the previous slot. We then define a2K ×
2K matrix QKH by QKH = P ⊗ R, where⊗ denotes the
Kronecker product. We next define a2K×2K diagonal matrix
DKH(θ) by

DKH(θ) = diag(

K
︷ ︸︸ ︷

1, · · · , 1, eθ,
1 + eθ

2
, · · · , K − 1 + eθ

K
).

Finally we define a2K × 2K matrix CKH(θ) by CKH(θ) =
QKHDKH(θ).

We are now ready to provide a useful expression for the
GE limit for the service process under the CKH scheduling
and that for its EBF (For the proof of Proposition 1, e.g., see
[10], [17]).

Proposition 1. The GE limitΛC(θ) for the service process
under the CKH scheduling is given by

ΛC(θ) = log δC(θ), (14)

where δC(θ) is the Perron-Frobenius (PF) eigenvalue of
CKH(θ). Thus, the EBFξC(θ) of the service process under
the CKH scheduling is given by

ξC(θ) = − log δC(−θ)

θ
. (15)

C. EBF of Service Process under RR Scheduling

In this subsection, we provide an expression for the GE
limit for the service process under the RR scheduling and
that for its EBF. Note that under the RR scheduling, the
service process{Cn} is a Markov modulated process whose
underlying Markov chain is{(Sn, L

(1)
n )} whereSn is defined

by Sn = n mod K for all n.
First we define aK × K matrix U by

U =











0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
1 0 · · · · · · 0











.

We then define a2K × 2K matrix QRR by QRR = U ⊗ P .
Let DRR(θ) denote a2K × 2K diagonal matrix given by

DRR(θ) = diag(

2K−1
︷ ︸︸ ︷

1, · · · , 1, eθ).

We finally define a2K × 2K matrix CRR(θ) by CRR(θ) =
QRRDRR(θ). We then have the following proposition, which
gives an explicit expression for the PF eigenvalue of the matrix
CRR(θ). We provide the proof of Proposition 2 in Appendix.

Proposition 2. Let C̃RR(θ) denote a2×2 matrix defined by
C̃RR(θ) = P Kdiag(1, eθ). The PF eigenvalueδC(θ) of the
matrix CRR(θ) is then given by

δC(θ) =
[

η(θ) +
√

η(θ)2 + κ(θ)
]1/K

, (16)

where

η(θ) =
c̃00(θ) + c̃11(θ)

2
,

κ(θ) = −c̃00(θ)c̃11(θ) + c̃01(θ)c̃10(θ),

and c̃ij(θ) (i, j = 0, 1) denotes the(i, j)th element of the
matrix C̃RR(θ).

Then, the GE limit for the service process under the RR
scheduling and its EBF are also expressed as (14) and (15),
respectively, butδC(θ) is the PF eigenvalue ofCRR(θ) and
given by (16).

D. Approximations Based on the Theory of EB

The theory of EB can be used to obtain approximation
formulas for the tail distribution of the queue length in steady
state and that of the queueing delay. In this subsection, we
provide such approximation formulas.

Let X∞ denote a random variable representing the queue
length evolved by (7) in steady state. It is known that under
some conditions, the tail distributionP(X∞ > x) of the queue
length in steady state is approximately given by [10]

P(X∞ > x) ≈ exp(−θ∗x),

whereθ∗ is the unique real solution of the equation

ΛA(θ) + ΛC(−θ) = 0. (17)

Similarly, let D denote a random variable representing the
delay of a randomly chosen packet from the tagged user. It is
known that under some conditions, the tail distributionP(D >
t) of the delay of a randomly chosen packet is approximately
expressed as [14]

P(D > t) ≈ exp(ΛC(−θ∗)t), (18)

whereθ∗ is the unique real solution of the equation (17).

IV. N UMERICAL RESULTS

In this section, we provide numerical results to compare the
delay performance under the CKH scheduling with that under
the RR scheduling. Throughout this section, we assume that
the (maximum) service rate of wireless channel and the packet
size are 2Mbps and 250bytes, respectively, and the number of
usersK is equal to 10. Under this setting, the length of one
slot is equal to 1msec. We also assume the Nakagami fading
parameterm = 1 (i.e., the Rayleigh fading channel) and the
Doppler frequencyfd = 10Hz.

Before comparing the delay performance under the CKH
scheduling with that under the RR scheduling, we first examine
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Fig. 2. Tail probabilities of delay under the CKH scheduling
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Fig. 3. Tail probabilities of delay under the RR scheduling

the accuracy of our approximation formula (18) based on
the analysis presented in Section III. Figs. 2 and 3 show
the tail probabilities of delay of a randomly chosen packet
from the tagged user under the CKH scheduling and those
under the RR scheduling. The tail probabilities estimated by
our approximation formulas are denoted by “Analysis” and
those estimated by simulation are denoted by “Simulation” in
the figures. In Case 1 of both figures, the parameters of the
arrival process from the tagged user are set asα = 0.900,
β = 0.992, and λ = 0.300. Under this setting, the average
rate, the mean on-period and the mean off-period are 42.0kbps,
10.0msec and 133msec, respectively. In Case 2 of both figures,
the parameters of the arrival process from the tagged user are
set asα = 0.800, β = 0.980, and λ = 0.200. Under this
setting, the average rate, the mean on-period and the mean
off-period are 36.4kbps, 5.00msec and 50.0msec, respectively.
In both figures, we setγ1 = 7dB andγ = 16dB. In Figs. 2
and 3, we observe that for both scheduling algorithms, the
tail probabilities estimated by our approximation formulas are
close to those estimated by simulation.

In what follows, we compare the delay performance under
the CKH scheduling with that under the RR scheduling. First
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Fig. 4. Delay performance as a function of arrival rate
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Fig. 5. Delay performance as a function of mean on-period length

we compare the effect of the arrival rate from the tagged user
on the delay performance under the CKH scheduling with
that under the RR scheduling. For this purpose, we change
the parameterλ of the on-off source while fixing the other
parametersα and β. Fig. 4 shows the probability that the
delay of a randomly chosen packet from the tagged user is
greater than 100msec under the CKH scheduling and that
under the RR scheduling as a function of the arrival rate. These
probabilities are estimated by approximation formula (18). We
set the parameters of the on-off source asα = 0.800 andβ =
0.980. Under this setting, mean on-period and mean off-period
are 5msec and 50msec, respectively. For wireless channel,
we consider the following two conditions. For Condition 1
(resp. Condition 2), the parameters for the channel are set as
γ1 = 7dB andγ = 16dB (resp.γ1 = 7dB andγ = 12dB).

In Fig. 4, we observe the following. First, although the
CKH scheduling is always superior to the RR scheduling for
the maximum throughput, this is not the case for the delay
performance. In fact, for Condition 1 (resp. Condition 2), the
CKH scheduling is superior to the RR scheduling only when
the arrival rate is greater than 82kbps (resp. 26kbps). Thus,
the CKH scheduling is superior to the RR scheduling only
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Fig. 6. EBF of service processes

when the arrival rate is greater than a threshold. The threshold
varies with the average SNR, and the region where the CKH
scheduling is superior to the RR scheduling becomes narrow
when the average SNR is high.

Next we examine how the burstiness of the arrival process
affects the delay performance under the CKH scheduling and
that under the RR scheduling. For this purpose, we change the
mean on-period of the on-off source while fixing the average
arrival rate (i.e., we changeα and β while fixing ρ and λ).
Then, a large value of the mean on-period means the strong
burstiness of the arrival process. Fig. 5 shows the probability
that the delay of a randomly chosen packet from the tagged
user is greater than 100msec under the CKH scheduling and
that under the RR scheduling as a function of the mean on-
period. We set the parameterλ = 0.250 and fix the arrival
rate to 20kbps. For wireless channel, we consider the same
two conditions as in Fig. 4. In Fig. 5, we observe that for both
scheduling algorithms, the burstiness of the arrival process has
a strong impact on the delay performance. We also see that
the CKH scheduling is superior to the RR scheduling only
when the mean-on period is greater than a threshold. The
threshold varies with the average SNR, and the region where
the CKH scheduling is superior to the RR scheduling becomes
narrow when the average SNR is high. In fact, for Condition 1
(resp. Condition 2), the CKH scheduling is superior to the RR
scheduling when the mean on-period is greater than 168msec
(resp. 36msec).

We investigate the observations in Figs. 4 and 5 in more
detail. Fig. 6 shows the EBFξC(θ) of the service process
under the CKH scheduling and that under the RR scheduling
as a function ofθ for Conditions 1 and 2. In Fig. 6, we
observe the following. Whenθ is small, the EBF under the
CKH scheduling is greater than that under the RR scheduling
for both channel conditions. However, with the increase in the
value ofθ, the EBF under the CKH scheduling more rapidly
decrease than that under the RR scheduling. As a result, when
θ is large, the EBF under the CKH scheduling is less than
that under the RR scheduling. From the above observation,
we see that while the CKH scheduling is superior to the RR
scheduling for a small value ofθ, the RR scheduling is superior
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to the CKH scheduling for a large value ofθ. Note here that
the EBFξC(θ) at large value ofθ denotes the service capacity
as the QoS constraint is stringent, and vice versa [15]. Hence,
only when the required QoS for delay is not stringent, the
service capacity under the CKH scheduling is greater than
that of the RR scheduling. In the simulation results in [5], a
similar observation has been made. Another interpretationof
Fig. 6 is that when the resulting delay performance is bad, the
CKH scheduling is superior to the RR scheduling; otherwise
the RR scheduling is superior to the CKH scheduling.

Finally we examine the effect of the boundaryγ1 on the
delay performance under the CKH scheduling and that under
the RR scheduling. For this purpose, forγ1 = 5, 7dB, we
show which scheduling is superior for various values of the
average SNRγ and the arrival rate. A smallγ1 means that
the system has a strong error tolerance against low average
SNR. In Fig. 7, we consider the delay of a randomly chosen
packet from the tagged user is greater than 100msec as the
performance measure for comparison, and we changeλ while
fixing α andβ to 1.000 and 0.000, respectively (i.e., the arrival
process is a Bernoulli process). We see in Fig. 7 that if the
system has a strong error tolerance, the region where the CKH
scheduling is superior to the RR scheduling becomes narrow.

V. CONCLUSION

In this paper, we focus on the CKH scheduling algorithm,
which most coarsely utilizes multiuser diversity. We then
compare the packet delay performance of individual user under
the CKH scheduling with that under the RR scheduling in
order to reveal the characteristics of the scheduling algorithm
exploiting multiuser diversity. For this purpose, we develop
an approximate formula to estimate the tail distribution of
packet delay for an arbitrary user under the CKH scheduling
and that under the RR scheduling. Numerical results exhibit
that in contrast to the throughput performance of the overall
system, for the delay performance of individual user, the CKH
scheduling is superior to the RR scheduling only when the
system lies in a severe environment, e.g., when the arrival
rate is large, the burstiness of the arrival process is strong or



the average SNR is low. We also see that if the system has
a strong error tolerance against low average SNR, the region
where the CKH scheduling is superior to the RR scheduling
becomes narrow.
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APPENDIX

A. Proof of Proposition 2

For the proof of Proposition 2, we provide Theorem 1 below,
which shows a more general result than Proposition 2. Then,
Proposition 2 will immediately follow from Theorem 1.

To state Theorem 1, we need the definitions of some
matrices . We consider aNJ × NJ matrix C given by

C =











O L1 O · · · O
...

. . .
. . .

.. .
...

...
. . . LN−2 O

O · · · · · · O LN−1

L0 O · · · · · · O











, (19)

whereN andJ are positive integers,Ln (n = 0, 1, · · · , N−1)
denotes anyJ ×J matrix andO denotes aJ ×J zero matrix.
Let δ denote the PF eigenvalue ofC in (19). We define a
J × J matrix C̃ as

C̃ = L0L1 · · ·LN−1. (20)

Theorem 1. The PF eigenvalueδ of C in (19) is given by

δ = δ̃1/N , (21)

where δ̃ is the PF eigenvalue of̃C.
PROOF: We denote theith (i = 0, . . . , NJ − 1) row vector
of C by ci. We also denote an eigenvalue ofC by σ. To
obtain the determinant ofC − σI, we apply the following
manipulations toC − σI from the 0th step to the(N − 2)nd
step. In thekth (k = 0, . . . , N − 2) step,

1) define the1 × NJ vectorsakJ , . . . , a(k+1)J−1 by





akJ

...
a(k+1)J−1




 = σ−k−1L0 · · ·Lk






ckJ

...
c(k+1)J−1




 .

2) for j = 0, . . . , J −1, addakJ+j to the[(N −1)J + j]th
row of C.

Note that through the manipulations, the determinant is invari-
ant. Thus, after the(N − 2)nd step, we have

|C − σI | =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−σI L1 O · · · O
...

. . .
. . .

. . .
...

...
. . . LN−2 O

O · · · · · · −σI LN−1

O · · · · · · O σ−N+1C̃ − σI

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(22)

From (22), we obtain

|C − σI| = (−σ)(N−1)J |σ−N+1C̃ − σI |. (23)

In (23), we see that if and only if|C̃ − σNI| = 0, we have
|σ−N+1C̃ − σI| = 0 and thus|C − σI| = 0. Therefore,
the eigenvalueσ of C is given byσ = σ̃1/N , whereσ̃ is an
eigenvalue ofC̃. This completes the proof.

REFERENCES

[1] R. Knopp and P. A. Humblet, “Information capacity and power control in
single-cell multiuser communications,”Proc. of IEEE ICC ’95, pp.331–
335, 1995.
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