A new distortion measure for motion estimation in motion-compensated hybrid video coding

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 258
  • Download : 0
In the video coding standards MPEG-x and H.26x, a motion-compensated prediction technique is used for enhancing the coding performance of bitrate reduction or peak signal to noise ratio (PSNR) improvement. This technique takes advantage of the correlation between consecutive frames in the time domain, which is relatively higher than that between adjacent blocks in the spatial domain. In order to utilize the correlation between consecutive frames, the conventional video coding standards have used the motion estimation (ME) and compensation technique, where the Sum of the Absolute Differences (SAD) is usually used as the distortion measure. The ME estimates the reference block that could minimize the residual signal between the current and reference blocks. However, the SAD is not appropriate to the specific sequences that have global or local illumination changes. In addition, the high-resolution video sequences have higher spatial correlation than the low-resolution video sequences in general. Therefore, a new distortion measure that can consider spatial and temporal correlation simultaneously may be helpful to enhance the coding performance. The proposed distortion measure searches for a reference block that minimizes the motion-compensated residual signal when the DC-component is predicted. In our proposed algorithm, the maximum BD-rate improvement is up to 13.6% for illumination-changed video sequences, and the average BD-rate improvement is 6.6% for various high-resolution video sequences in the baseline profile. (c) 2011 Elsevier B.V. All rights reserved.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2011-02
Language
English
Article Type
Article
Keywords

H.264/AVC

Citation

SIGNAL PROCESSING-IMAGE COMMUNICATION, v.26, no.2, pp.75 - 84

ISSN
0923-5965
URI
http://hdl.handle.net/10203/99481
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0