Electrical investigations of layer-by-layer films of carbon nanotubes

Single-wall carbon nanotubes (SWNTs) with anionic or cationic coatings have been prepared by exploiting the ability of certain surfactants to form a monolayer shell around the nanotube. The presence of electrically charged functional groups on the surface of the SWNT allows thin film deposition to proceed via the electrostatic layer-by-layer method. This self-assembly process was monitored using the quartz microbalance technique and Raman spectroscopy, while the morphology of the resulting thin layers was studied with atomic force microscopy. A variety of different architectures has been built up. In one arrangement, a single species of a modified SWNT (anionic or cationic) was alternated with a passive polymer to form a composite structure. A 'superlattice' architecture comprising alternating anionic and cationic modified nanotubes was also fabricated. The in-plane and out-of-plane dc conductivities of the films were measured at room temperature and contrasted with reference architectures (i.e. those containing no nanotubes). The results showed clearly that the incorporation of SWNTs into the multilayer assemblies provided electrically conductive thin films. It is suggested that the current versus voltage behaviour, particularly in the out-of-plane direction, is controlled by quantum mechanical tunnelling of carriers between the nanotubes.
Publisher
IOP PUBLISHING LTD
Issue Date
2006-07
Language
ENG
Keywords

CHARGED SURFACES; MULTILAYER FILMS; POLYELECTROLYTES; COMPOSITES; ADSORPTION; BEHAVIOR; BUILDUP; DENSITY; GROWTH

Citation

JOURNAL OF PHYSICS D-APPLIED PHYSICS, v.39, pp.3077 - 3085

ISSN
0022-3727
DOI
10.1088/0022-3727/39/14/030
URI
http://hdl.handle.net/10203/9492
Appears in Collection
MS-Journal Papers(저널논문)
  • Hit : 215
  • Download : 1
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 27 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0