Mass fabrication of resistive random access crossbar arrays by step and flash imprint lithography

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 428
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYun, Dae-Keunko
dc.contributor.authorKim, Ki-Donko
dc.contributor.authorKim, Sung-Hoko
dc.contributor.authorLee, Ji-Hyeko
dc.contributor.authorPark, Hyeong-Hoko
dc.contributor.authorJeong, Jun-Hoko
dc.contributor.authorChoi, Yang-Kyuko
dc.contributor.authorChoi, Dae-Geunko
dc.date.accessioned2013-03-09T00:24:05Z-
dc.date.available2013-03-09T00:24:05Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2009-11-
dc.identifier.citationNANOTECHNOLOGY, v.20, no.44-
dc.identifier.issn0957-4484-
dc.identifier.urihttp://hdl.handle.net/10203/94795-
dc.description.abstractStep and flash imprint lithography (SFIL) is a promising method recently used for next generation lithographic technology because it is a high-speed process that can be carried out at room temperature and low pressures. Improvements made to SFIL enable the replication of crossbar patterns with a high resolution and the development of suitable materials and techniques to achieve high resolution capability. In this study, SFIL is used to fabricate high-density random access crossbar arrays based on a NiO resistive switching system. The bottom and top electrodes are transferred onto silicon wafers perpendicular to each electrode using the inductively coupled plasma reactive ion etching (ICP-RIE) technique. Direct metal etching without a wet-based process minimizes damage to the electrode surface. The I-V curves of individual active cells (70 x 70 nm(2)) for crossbar arrays reveal the unipolar resistive switching (RS) behaviour of the fabricated device. A high off/on resistance ratio (>10(4)) and reproducible resistance switching characteristics for each active cell were found in different fields and for different wafers. The experimental data indicate that high-density crossbar arrays can be well replicated and that the electrical performance of these arrays is reliable.-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.subjectNM HALF-PITCH-
dc.subjectTRANSITION-METAL OXIDES-
dc.subjectNANOIMPRINT LITHOGRAPHY-
dc.subjectMEMORY-
dc.titleMass fabrication of resistive random access crossbar arrays by step and flash imprint lithography-
dc.typeArticle-
dc.identifier.wosid000270562900011-
dc.type.rimsART-
dc.citation.volume20-
dc.citation.issue44-
dc.citation.publicationnameNANOTECHNOLOGY-
dc.identifier.doi10.1088/0957-4484/20/44/445305-
dc.contributor.localauthorChoi, Yang-Kyu-
dc.contributor.nonIdAuthorYun, Dae-Keun-
dc.contributor.nonIdAuthorKim, Ki-Don-
dc.contributor.nonIdAuthorLee, Ji-Hye-
dc.contributor.nonIdAuthorPark, Hyeong-Ho-
dc.contributor.nonIdAuthorJeong, Jun-Ho-
dc.contributor.nonIdAuthorChoi, Dae-Geun-
dc.type.journalArticleArticle-
dc.subject.keywordPlusNM HALF-PITCH-
dc.subject.keywordPlusTRANSITION-METAL OXIDES-
dc.subject.keywordPlusNANOIMPRINT LITHOGRAPHY-
dc.subject.keywordPlusMEMORY-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0