Identification of the Hualien soil-structure interaction system

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 558
  • Download : 1
This article demonstrates how system identification techniques can be successfully applied to a soil-structure interaction system in conjunction with the results of the forced vibration tests on the Hualien large-scale seismic test structure which was recently built in Taiwan for an international joint research. The parameters identified are the shear moduli of several near-field soil regions as well as Young's moduli of the shell sections of the structure. The soil-structure interaction system is represented by the finite element method combined with infinite element formulation for the unbounded layered soil medium. Preliminary investigations are carried out on the results of the static stress analysis for the soil medium and the results of the in-situ tests to divide the soil-structure system into several regions with homogeneous properties and to determine the lower and upper bounds of the parameters for the purpose of identification. Then two sets of parameters are identified for two principal directions based on the forced vibration test data by minimizing the estimation error using the constrained steepest descent method. The simulated responses for the forced vibration tests using the identified parameters show excellent agreement with the test data. The present estimated parameters are also found to be well compared with the average value of those by other researchers in the joint project. (C) 1999 Elsevier Science Ltd. All rights reserved.
Publisher
Elsevier Sci Ltd
Issue Date
1999-08
Language
English
Article Type
Article
Keywords

INFINITE ELEMENTS; MODEL

Citation

SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, v.18, no.6, pp.395 - 408

ISSN
0267-7261
URI
http://hdl.handle.net/10203/9403
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0