Alternate State Variables for Emerging Nanoelectronic Devices

Cited 23 time in webofscience Cited 0 time in scopus
  • Hit : 298
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorGalatsis, Kosmasko
dc.contributor.authorKhitun, Alexko
dc.contributor.authorOstroumov, Romanko
dc.contributor.authorWang, Kang L.ko
dc.contributor.authorDichtel, William R.ko
dc.contributor.authorPlummer, Edwardko
dc.contributor.authorStoddart, James Fraserko
dc.contributor.authorZink, Jeffrey I.ko
dc.contributor.authorLee, Jae Youngko
dc.contributor.authorXie, Ya-Hongko
dc.contributor.authorKim, Ki Wookko
dc.date.accessioned2013-03-08T18:31:11Z-
dc.date.available2013-03-08T18:31:11Z-
dc.date.created2012-03-13-
dc.date.created2012-03-13-
dc.date.issued2009-01-
dc.identifier.citationIEEE TRANSACTIONS ON NANOTECHNOLOGY, v.8, no.1, pp.66 - 75-
dc.identifier.issn1536-125X-
dc.identifier.urihttp://hdl.handle.net/10203/93920-
dc.description.abstractWe provide an outlook of some important state variables for emerging nanoelectronic devices. State variables are physical representations of information used to perform information processing via memory and logic functionality. Advances in material science, emerging nanodevices, nanostructures, and architectures have provided hope that alternative state variables based on new mechanisms, nanomaterials, and natiodevices may indeed be plausible. We review and analyze the computational advantages that alternate state variables may possibly attain with respect to maximizing computational performance via minimum energy dissipation, maximum operating switching speed, and maximum device density.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectMOLECULAR ELECTRONICS-
dc.subjectCELLULAR-AUTOMATA-
dc.subjectHEAT-GENERATION-
dc.subjectSPIN-RESONANCE-
dc.subjectQUANTUM-DOT-
dc.subjectLOGIC-
dc.subjectTRANSISTOR-
dc.subjectENERGY-
dc.subjectMEMORY-
dc.subjectLIMITS-
dc.titleAlternate State Variables for Emerging Nanoelectronic Devices-
dc.typeArticle-
dc.identifier.wosid000262861500010-
dc.identifier.scopusid2-s2.0-59049085887-
dc.type.rimsART-
dc.citation.volume8-
dc.citation.issue1-
dc.citation.beginningpage66-
dc.citation.endingpage75-
dc.citation.publicationnameIEEE TRANSACTIONS ON NANOTECHNOLOGY-
dc.identifier.doi10.1109/TNANO.2008.2005525-
dc.contributor.nonIdAuthorGalatsis, Kosmas-
dc.contributor.nonIdAuthorKhitun, Alex-
dc.contributor.nonIdAuthorOstroumov, Roman-
dc.contributor.nonIdAuthorWang, Kang L.-
dc.contributor.nonIdAuthorDichtel, William R.-
dc.contributor.nonIdAuthorPlummer, Edward-
dc.contributor.nonIdAuthorZink, Jeffrey I.-
dc.contributor.nonIdAuthorLee, Jae Young-
dc.contributor.nonIdAuthorXie, Ya-Hong-
dc.contributor.nonIdAuthorKim, Ki Wook-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorLogic-
dc.subject.keywordAuthormemory-
dc.subject.keywordAuthormolecular electronics-
dc.subject.keywordAuthornanodevices-
dc.subject.keywordAuthornanoelectronics-
dc.subject.keywordAuthornanotechnology-
dc.subject.keywordAuthorspintronics-
dc.subject.keywordAuthorstate variable-
dc.subject.keywordPlusMOLECULAR ELECTRONICS-
dc.subject.keywordPlusCELLULAR-AUTOMATA-
dc.subject.keywordPlusHEAT-GENERATION-
dc.subject.keywordPlusSPIN-RESONANCE-
dc.subject.keywordPlusQUANTUM-DOT-
dc.subject.keywordPlusLOGIC-
dc.subject.keywordPlusTRANSISTOR-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusLIMITS-
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 23 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0