Hot carrier reliability study in body-tied fin-type field effect transistors

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 1025
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHan, JWko
dc.contributor.authorLee, CHko
dc.contributor.authorPark, Dko
dc.contributor.authorChoi, Yang-Kyuko
dc.date.accessioned2013-03-08T07:53:33Z-
dc.date.available2013-03-08T07:53:33Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2006-04-
dc.identifier.citationJAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, v.45, no.4B, pp.3101 - 3105-
dc.identifier.issn0021-4922-
dc.identifier.urihttp://hdl.handle.net/10203/92526-
dc.description.abstractHot-carrier effects in body-tied fin-type field effect transistors (FinFETs) are investigated. As the gate bias increases, coupling effects of two gates facing each other suppress the lateral channel electric field more effectively at double gate metal oxide FETs (MOSFETs) than at single gate MOSFETs. In double gate FinFETs, this effect is even further enhanced when the fin width is narrowed. The Substrate current produced by an impact ionization process becomes large as fin width increases. In the generalized substrate Current model, the maximum substrate current bias condition is approximately V-G/V-D similar to 0.5. However, in the double-gate FinFETs, it was (V-G - V-T)/V-D similar to 0.3. There are two competing stress conditions: the maximum substrate current condition, and the maximum gate current condition. Device degradation is compared for various fin widths after both type of stress. It was found that the maximum substrate current stress condition degraded the device more significantly. The narrow fin is more immune to both stress biases than the wide fin. Thus, the narrow fin is appropriate for further device scaling and reliability. The supply voltage which corresponds to a 10-years lifetime was 1.31 V for the worst hot-carrier stress case.-
dc.languageEnglish-
dc.publisherJapan Soc Applied Physics-
dc.subjectMOSFETS-
dc.titleHot carrier reliability study in body-tied fin-type field effect transistors-
dc.typeArticle-
dc.identifier.wosid000237570600042-
dc.identifier.scopusid2-s2.0-33646905668-
dc.type.rimsART-
dc.citation.volume45-
dc.citation.issue4B-
dc.citation.beginningpage3101-
dc.citation.endingpage3105-
dc.citation.publicationnameJAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS-
dc.identifier.doi10.1143/JJAP.45.3101-
dc.contributor.localauthorChoi, Yang-Kyu-
dc.contributor.nonIdAuthorHan, JW-
dc.contributor.nonIdAuthorLee, CH-
dc.contributor.nonIdAuthorPark, D-
dc.type.journalArticleArticle; Proceedings Paper-
dc.subject.keywordAuthorbody-tied FinFET-
dc.subject.keywordAuthorhot-carrier effect-
dc.subject.keywordAuthorreliability-
dc.subject.keywordAuthorimpact ionization-
dc.subject.keywordAuthorsubstrate current-
dc.subject.keywordAuthordevice lifetime-
dc.subject.keywordPlusMOSFETS-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0