Spin-orbit effects for the diatomic molecules containing halogen elements studied with relativistic effective core potentials: Hx, X2 (X = Cl, Br and I) and IZ (Z = F, Cl and Br) molecules

Spin-orbit effects on the spectroscopic constants (bond lengths, dissociation energies and harmonic vibrational frequencies) for HX, X-2 (X = Cl, Br and I) and IZ (Z = F, Cl and Br) molecules have been studied using shape-consistent relativistic effective core potentials (RECPs) with effective one-electron spin-orbit operator at HF, MP2, CCSD and CCSD(T) levels. Basis sets of pVTZ quality have been derived for Cl, Br and I for the present work. The spectroscopic constants calculated by the two-component RECP method are in good agreement with those from all-electron Dirac-Coulomb calculations with the basis sets of the similar quality at all levels of theory considered, suggesting that RECP methods mimic all-electron Dirac-Coulomb methods calculations rather well for molecules. Spin-orbit effects elongate the bond lengths, while reduce the dissociation energies and harmonic vibrational frequencies. From the spin-orbit effects on the spectroscopic constants, especially on dissociation energies of IF, ICl, IBr and I-2, it is confirmed that the magnitude of spin-orbit effects increases in the F < Cl < Br < I order. Spin-orbit effects constitute a significant portion of relativistic effects for the studied molecules. For the dissociation energies of the studied molecules, the spin-orbit effects and electron correlation effects are slightly non-additive, implying the need of spin-orbit calculations at the correlated level for the high accuracy. (C) 2004 Elsevier B.V. All rights reserved.
Publisher
Elsevier Science Bv
Issue Date
2005-04
Language
ENG
Keywords

OPERATORS; KR

Citation

CHEMICAL PHYSICS, v.311, no.1-2, pp.121 - 127

ISSN
0301-0104
DOI
10.1016/j.chemphys.2004.09.022
URI
http://hdl.handle.net/10203/87738
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
  • Hit : 132
  • Download : 0
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 24 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0