Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: Proline as a translocation promoting factor

Buforin 2 is an antimicrobial peptide discovered in the stomach tissue of the Asian toad Bufo bufo gargarizans. The 21-residue peptide with +6 net charge shows antimicrobial activity an order of magnitude higher than that of magainin 2, a membrane-permeabilizing antimicrobial peptide from Xenopus laevis [Park, C. B., Kim, M. S., and Kim, S. C. (1996) Biochem. Biophys. Res. Commun. 218, 408-413]. In this study, we investigated the interactions of buforin 2 with phospholipid bilayers in comparison with magainin 2 to obtain insight into the mechanism of action of buforin 2. Equipotent Trp-substituted peptides were used to fluorometrically monitor peptide-lipid interactions. Circular dichroism measurements showed that buforin 2 selectively bound to liposomes composed of acidic phospholipids, assuming a secondary structure similar to that in trifluoroethanol/water, which is an amphipathic helix distorted around Pro(11) with a flexible N-terminal region [Yi, G. S., Park, C. B., Kim, S. C., and Cheong, C. (1996) FEES Lett. 398, 87-90]. Magainin 2 induced the leakage of a fluorescent dye entrapped within lipid vesicles coupled to Lipid flip-flop. These results have been interpreted as the formation of a peptide-lipid supramolecular complex pore [Matsuzaki, K. (1998) Biochim. Biophys. Acta 1376, 391-400]. Buforin 2 exhibited much weaker membrane permeabilization activity despite its higher antimicrobial activity. In contrast, buforin 2 was more efficiently translocated across lipid bilayers than magainin 2. These results suggested that the ultimate target of buforin 2 is not the membrane but intracellular components. Furthermore, buforin 2 induced no lipid flip-flop, indicating that the mechanism of translocation of buforin 2 is different from that of magainin 2. The role of Pro was investigated by use of a P11A derivative of buforin 2. The derivation caused a change to magainin 2-like secondary structure and membrane behavior. Pro(11) was found to be a very important structural factor for the unique properties of buforin 2.
Publisher
AMER CHEMICAL SOC
Issue Date
2000-07
Language
ENG
Keywords

ESCHERICHIA-COLI; ANTIBACTERIAL PEPTIDES; PHOSPHOLIPID-BILAYERS; PORE FORMATION; HISTONE H2A; MAGAININ-2; MEMBRANE; MECHANISM; ALAMETHICIN; ANALOGS

Citation

BIOCHEMISTRY, v.39, no.29, pp.8648 - 8654

ISSN
0006-2960
URI
http://hdl.handle.net/10203/74806
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
  • Hit : 175
  • Download : 0
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 118 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0