Effects on signal integrity and radiated emission by split reference plane on high-speed multilayer printed circuit boards

Power/ground partitioning has been used, to supply multivoltage levels and to isolate power/ground noise in high-speed multilayer printed circuit boards. However, the partitioning of the power/ground plane breaks the current return path of the signal current through either the power plane or the ground plane, which causes undesired effects such as signal distortion, crosstalk, and radiation. To control and suppress these undesired effects, we should understand the electromagnetic mechanism associated with them. In this paper, the mechanism of the reflection and the transmission of the signal by the slotted power/ground plane is well understood through an analysis of measurements based on time-domain reflectometry. Considering the propagation of a slot wave through the slot line on the power/ground plane, we have successfully explained the changes of the transmitted and reflected waveforms. Furthermore, we have numerically and experimentally investigated the effects of the power/ground partitioning on the radiated emission in various structures. Finally, it is confirmed that the employment of a stitching capacitor on the power/ground slot suppresses the signal distortion and the radiated emission significantly. When the size and the location of the stitching capacitor are designed, there should be a compromise between the noise isolation and the guarantee of the return current path, with considering the resonance frequencies of planes by the capacitor.
Publisher
Institute of Electrical and Electronics Engineers
Issue Date
2005-11
Language
ENG
Keywords

LINE

Citation

IEEE TRANSACTIONS ON ADVANCED PACKAGING, v.28, no.4, pp.724 - 735

ISSN
1521-3323
URI
http://hdl.handle.net/10203/650
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
13.pdf(632.33 kB)Download
  • Hit : 491
  • Download : 573
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 27 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0