Spread spectrum clock generator with delay cell array to reduce electromagnetic interference

In high-speed digital systems, most of the electromagnetic interference (EMI) from the system is caused by high-speed digital clock drivers and synchronized circuits. To reduce the EMI from the system clocks, spread spectrum clock (SSC) techniques that modulate the system clock frequency have been proposed. A conventional SSC generator (SSCG) has been implemented with a phase locked loop (PLL) by controlling a period jitter. However, the conventional SSCG with PLL becomes more difficult to implement at higher clock frequencies, in the gigahertz range, because of the random period jitter of the PLL. Furthermore, the attenuation of EMI is decreased due to the random period jitter of the PLL. To overcome the problems associated with the random period jitter, we propose an SSCG with a delay cell array (DCA), which controls the position of clock transitions with a triangular modulation profile. Measurement and simulation have demonstrated that the proposed SSCG with DCA is easier to implement and more effective in attenuating the EMI compared with the conventional SSCG with PLL. The proposed SSCG with DCA was implemented on a chip using a 0.35-mu m CMOS process and achieved a 9-dB attenuation of the EMI at 390 MHz.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2005-11
Language
ENG
Citation

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, v.47, pp.908 - 920

ISSN
0018-9375
URI
http://hdl.handle.net/10203/647
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
12.pdf(751.39 kB)Download
  • Hit : 619
  • Download : 900
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 22 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0