Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop. Validation of the model has been performed by comparing the computational results with experimental measurements from isolated drops in shock tube experiments as well as with observations from fully developed diesel sprays.
Publisher
Society of Automotive Engineers
Issue Date
2006-04-03
Citation

SAE 2006 World Congress & Exhibition, v.2010 pp.187-200

URI
http://hdl.handle.net/10203/6086
Link
http://www.sae.org/technical/papers/2006-01-1546
Appears in Collection
ME-Journal Papers(저널논문)
  • Hit : 394
  • Download : 141
  • Cited 0 times in thomson ci

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0