A path tracking control system for autonomous mobile robots: an experimental investigation

A path tracking control system developed for autonomous mobile robots driven by wheels is described. In conventional approaches, the path is usually planned by smooth curves with curvature-continuity and a path tracking controller is independently designed to compensate the path error occurring in the navigation. However, smooth path planning is difficult to execute on-line due to the computational burden. In addition, the conventional path tracking algorithm often causes unpredictable tracking motion when large path error occurs. In previous work, the present authors presented a bang-bang path tracking algorithm by which smooth and stable tracking motion could be obtained even for the path given by simple combination of straight lines or circles and its effectiveness was proven via preliminary simulation studies. However, there still remained the problem that the design parameter called landing coefficient could not be optimally chosen and performance verification through real system application was not accomplished. In this study, we improve the algorithm which can determine the design parameters analytically and verify its performance by implementing the algorithm in an actual mobile robot control system designed using a personal computer. To investigate the performance of the control system, a series of path tracking experiments was conducted for a two-wheel driven robot developed in the laboratory.
Publisher
Pergamon-Elsevier Science Ltd
Issue Date
1994
Language
ENG
Citation

MECHATRONICS, v.4, no.8, pp.799 - 820

ISSN
0957-4158
DOI
10.1016/0957-4158(94)90054-X
URI
http://hdl.handle.net/10203/57653
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
  • Hit : 147
  • Download : 0
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 12 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0