An efficient path-based equivalent circuit model for design, synthesis, and optimization of power distribution networks in multilayer printed circuit boards

In high-speed printed circuit boards, the decoupling capacitors are commonly used to mitigate the power-bus noise that causes many signal integrity problems. It is very important to determine their proper locations and values so that the power distribution network should have low impedance over a wide range of frequencies, which demands a precise power-bus model considering the decoupling capacitors. However, conventional power-bus models suffer front various problems, i.e., the numerical analyzes require huge computation while the lumped circuit models show poor accuracy. In this paper, a novel power-bus model has been proposed, which simplifies the n-port Z-parameters of a power-bus plane to a lumped T-network circuit model. It exploits the path-based equivalent circuit model to consider the interference of the current paths between the decoupling capacitors, while the conventional lumped models assume that all decoupling capacitors are connected in parallel, independently with each other. It also models the equivalent electrical parameters of the board parasitic precisely, while the conventional lumped models employ only the inter-plane capacitance of the power-ground planes. Although it is a lumped model for fast and easy calculation, experimental results show that the proposed model is almost as precise as the numerical analysis. Consequently, the proposed model enables a quick and accurate optimization of power distribution networks in the frequency domain by determining the locations and values of the decoupling capacitors.
Publisher
Institute of Electrical and Electronics Engineers
Issue Date
2004-02
Language
ENG
Keywords

PERFORMANCE; PLANES

Citation

IEEE TRANSACTIONS ON ADVANCED PACKAGING, v.27, no.1, pp.97 - 106

ISSN
1521-3323
URI
http://hdl.handle.net/10203/549
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
01288274.pdf(637.87 kB)Download
  • Hit : 497
  • Download : 227
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 15 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0