An advanced contrast enhancement using partially overlapped sub-block histogram equalization

In this paper an advanced histogram-equalization algorithm for contrast enhancement is presented. Histogram equalization is the most popular algorithm for contrast enhancement due to its effectiveness and simplicity. It can be classified into two branches according to the transformation function used: global or local. Global histogram equalization is simple and fast, but its contrast-enhancement power is relatively low. Local histogram equalization, on the other hand, can enhance overall contrast more effectively, but the complexity of computation required is very high due to its fully overlapped sub-blocks. In this paper, a low-pass filter-type mask is used to get a nonoverlapped sub-block histogram-equalization function to produce the high contrast associated with local histogram equalization but with the simplicity of global histogram equalization. This mask also eliminates the blocking effect of nonoverlapped sub-block histogram-equalization. The low-pass filter-type mask is realized by partially overlapped sub-block histogram-equalization (POSHE). With the proposed method, since the sub-blocks are much less overlapped, the computation overhead is reduced by a factor of about 100 compared to that of local histogram equalization while still achieving high contrast. The proposed algorithm can be used for commercial purposes where high efficiency is required, such as camcorders, closed-circuit cameras, etc.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2001-04
Language
ENG
Description

IEEE Transactions on Circuits and Systems For Video Technology

Citation

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, v.11, no.4, pp.475 - 484

ISSN
1051-8215
URI
http://hdl.handle.net/10203/489
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
[ToCSfVT2001]jyk_An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization.pdf(1.18 MB)Download
  • Hit : 886
  • Download : 2755
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 219 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0