Nanomechanical behavior of beta-SiC nanowire in tension: Molecular dynamics simulations

Cited 30 time in webofscience Cited 0 time in scopus
  • Hit : 859
  • Download : 16
DC FieldValueLanguage
dc.contributor.authorKim, TYko
dc.contributor.authorHan, SSko
dc.contributor.authorLee, HyuckMoko
dc.date.accessioned2008-05-20T03:27:28Z-
dc.date.available2008-05-20T03:27:28Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2004-05-
dc.identifier.citationMATERIALS TRANSACTIONS, v.45, no.5, pp.1442 - 1449-
dc.identifier.issn1345-9678-
dc.identifier.urihttp://hdl.handle.net/10203/4604-
dc.description.abstractThe molecular dynamics (MD) simulation employing a Tersoff potential was performed to examine the nanomechanical behavior of the beta-SiC nanowire in tension. The elongation was much larger than that of the bulk beta-SiC. We observed non-homogeneous deformation, and the fracture behavior was found to depend on size, orientation and temperature of the specimen. The Young's modulus calculated in this study generally decreased with temperatures and increased with the radius, namely, the diameter of the beta-SiC nanowire as long as the length scale remained the same. The initial orientation was found to have a more serious effect on the Young's modulus than size and temperature. The [1 1 1] Young's modulus is much higher than that of the [001] orientation. The fracture of the beta-SiC nanowire in the [001] orientation showed two different modes, which is brittle at 100 K and ductile at 300 and 500 K. The ductile fracture was accompanied by formation of an atomic chain. In the [1 1 1] orientation, it was always fractured in the ductile mode and thus an atomic chain was formed before rupture.-
dc.description.sponsorshipThis research was performed with the financial support of the Center for Nanostructured Materials Technology under the 21st Century Frontier R&D Program of Ministry of Science and Technology, Korea.en
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherJapan Inst Metals-
dc.subjectWALLED CARBON NANOTUBES-
dc.subjectELASTIC PROPERTIES-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectSILICON NANOWIRES-
dc.subjectDEFORMATION-
dc.subjectPOTENTIALS-
dc.subjectSTRENGTH-
dc.subjectFRACTURE-
dc.subjectSYSTEMS-
dc.titleNanomechanical behavior of beta-SiC nanowire in tension: Molecular dynamics simulations-
dc.typeArticle-
dc.identifier.wosid000221863900010-
dc.identifier.scopusid2-s2.0-3342946061-
dc.type.rimsART-
dc.citation.volume45-
dc.citation.issue5-
dc.citation.beginningpage1442-
dc.citation.endingpage1449-
dc.citation.publicationnameMATERIALS TRANSACTIONS-
dc.identifier.doi10.2320/matertrans.45.1442-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorLee, HyuckMo-
dc.contributor.nonIdAuthorKim, TY-
dc.contributor.nonIdAuthorHan, SS-
dc.type.journalArticleArticle-
dc.subject.keywordAuthormolecular dynamics-
dc.subject.keywordAuthorbeta-SiC nanowire-
dc.subject.keywordAuthorelastic modulus-
dc.subject.keywordAuthoratomic chain-
dc.subject.keywordPlusWALLED CARBON NANOTUBES-
dc.subject.keywordPlusELASTIC PROPERTIES-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusSILICON NANOWIRES-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusPOTENTIALS-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusFRACTURE-
dc.subject.keywordPlusSYSTEMS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 30 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0