Human posture and gait control adjustability described by dynamic model역학 모델을 이용한 인체 균형 및 보행 제어 조정성에 관한 연구

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 607
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorPark, Su-Kyung-
dc.contributor.advisor박수경-
dc.contributor.authorKim, Se-Young-
dc.contributor.author김세영-
dc.date.accessioned2011-12-14T05:25:19Z-
dc.date.available2011-12-14T05:25:19Z-
dc.date.issued2011-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=466324&flag=dissertation-
dc.identifier.urihttp://hdl.handle.net/10203/43470-
dc.description학위논문(박사) - 한국과학기술원 : 기계공학전공, 2011.2, [ xi,107 p ]-
dc.description.abstractIn this dissertation, the human posture and gait control adjustability were quantified using dynamic models, in order to understand why changes of control mechanism are required in challenging conditions such as larger perturbation and speed increase. A quantitative postural control model, consisting of two-segment inverted pendulum with joint torque controller, was employed to explain abnormal postural responses of patients with Parkinson’s disease (PD). We hypothesized that postural control impairment of subjects with PD can be quantified as an abnormal scaling of postural feedback gain with increased postural challenges. The results showed that the model simulations can well reproduce postural responses in young, elderly and PD subject groups for a wide range of surface perturbations. Continuous feedback gain scaling was observed for all subject groups, implying that the nervous system automatically adjusts motor output to accommodate changes in biomechanical constraints. Abnormal postural responses of subjects with PD were consistent with smaller than normal ankle feedback gain, larger than normal hip feedback gains, and an inflexible selection of feedback gain as the perturbation conditions change. As a part of postural control study, we also investigated whether postural responses to back push, as an impulse disturbance, can be described with continuous feedback manner as push size increased. The result showed that the model simulations reasonably well reproduced postural responses for a wide range of push perturbation and the feedback gain scaling was also observed with the increase of push size. In the view of gain scaling, subjects sensitively adjusted their ankle torque related gains to suppress ankle torque generation without violating constraints. A compliant walking model having radial telescoping legs was proposed in order to understand the substantial dynamics of human walking within the framework of energetics. In this study we calculated t...eng
dc.languageeng-
dc.publisher한국과학기술원-
dc.subject다리 강성-
dc.subject푸시 균형 제어-
dc.subject피드백 게인 스케일링-
dc.subject자세 제어-
dc.subject워킹 모델-
dc.subjectcompliant walking model-
dc.subjecteffective leg stiffness-
dc.subjectpush recovery-
dc.subjectfeedback gain scaling-
dc.subjectpostural control-
dc.titleHuman posture and gait control adjustability described by dynamic model-
dc.title.alternative역학 모델을 이용한 인체 균형 및 보행 제어 조정성에 관한 연구-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN466324/325007 -
dc.description.department한국과학기술원 : 기계공학전공, -
dc.identifier.uid020075022-
dc.contributor.localauthorPark, Su-Kyung-
dc.contributor.localauthor박수경-
Appears in Collection
ME-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0