Minimal models for drinfeld modules of rank 2 with complex multiplication = 복소곱을 갖는 계수 2인 드린펠트 모듈의 최소 모형

In this paper, we study on the minimal models of Drinfeld module of rank 2. Let F be a separable extension of k = $F_q(T).$ In the first, we show that if the class number $h(O_F)$ is greater than 1, then there exists a Drinfeld module over F which does not have a global minimal model over F. Let K be a imaginary quadratic extension of k and H be the Hilbert class field of $Ο_k$. Let φ be a Drinfeld module defined over H of rank 2 with complex multiplication by $Ο_k$. We prove that if q is odd and p(T) is a monic irreducible element in $F_q[T]$ of degree prime to q-1, then there exists a unique k-module which has a global minimal model over k(j(φ)).
Advisors
Bae, Sung-Hanresearcher배성한researcher
Publisher
한국과학기술원
Issue Date
2001
Identifier
169529/325007 / 000955334
Language
eng
Description

학위논문(박사) - 한국과학기술원 : 수학전공, 2001.2, [ [ii], 45 p. ]

Keywords

Drinfeld module; Minimal model; 최소 모형; 드린펠트 가군

URI
http://hdl.handle.net/10203/41839
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=169529&flag=t
Appears in Collection
MA-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.
  • Hit : 77
  • Download : 0
  • Cited 0 times in thomson ci

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0