Simulation-based prediction model of the draw-bead restraining force and its application to sheet metal forming process

Draw-bead is applied to control the material flow in a stamping process and improve the product quality by controlling the draw-bead restraining force (DBRF). Actual die design depends mostly on the trial-and-error method without calculating the optimum DBRF. Die design with the predicted value of DBRF can be utilized at the tryout stage effectively reducing the cost of the product development. For the prediction of DBRF, a simulation-based prediction model of the circular draw-bead is developed using the Box-Behnken design with selected shape parameters such as the bead height, the shoulder radius and the sheet thickness. The value of DBRF obtained from each design case by analysis is approximated by a second order regression equation. This equation can be utilized to the calculation of the restraining force and the determination of the; draw-bead shape as a prediction model. For the evaluation of the prediction model, the optimum design of DBRF in sheet metal forming is carried out using response surface methodology. The suitable type of the draw-bead is suggested based on the optimum values of DBRF. The prediction model of the circular draw-bead proposes the design method of the draw-bead shape. The present procedure provides a guideline in the tool design stage for sheet metal forming to reduce the cost of the product development. (C) 2007 Elsevier B.V. All rights reserved.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2007-06
Language
ENG
Keywords

DESIGN

Citation

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, v.187, pp.123 - 127

ISSN
0924-0136
URI
http://hdl.handle.net/10203/3312
Appears in Collection
ME-Journal Papers(저널논문)
  • Hit : 523
  • Download : 8
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 13 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0