The dilation of a geometric graph is the maximum, over all pairs of points in the graph, of the ratio of the Euclidean length of the shortest path between them in the graph and their Euclidean distance. We consider a generalized version of this notion, where the nodes of the graph are not points but axis-parallel rectangles in the plane. The arcs in the graph are horizontal or vertical segments connecting a pair of rectangles, and the distance measure we use is the L-1-distance. The dilation of a pair of points is then defined as the length of the shortest rectilinear path between them that stays within the union of the rectangles and the connecting segments, divided by their L-1-distance. The dilation of the graph is the maximum dilation over all pairs of points in the union of the rectangles. We study the following problem: given n non-intersecting rectangles and a graph describing which pairs of rectangles are to be connected, we wish to place the connecting segments such that the dilation is minimized. We obtain four results on this problem: (i) for arbitrary graphs, the problem is NP-hard; (ii) for trees, we can solve the problem by linear programming on O(n(2)) variables and constraints; (iii) for paths, we can solve the problem in time O(n(3) logn); (iv) for rectangles sorted vertically along a path, the problem can be solved in O(n(2)) time, and a (1 + epsilon)-approximation can be computed in linear time. (C) 2004 Elsevier B.V. All rights reserved.

- Publisher
- ELSEVIER SCIENCE BV

- Issue Date
- 2005-01

- Language
- ENG

- Article Type
- Article

- Keywords
GRAPH

- Citation
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, v.30, no.1, pp.59 - 77

- ISSN
- 0925-7721

- Appears in Collection
- CS-Journal Papers(저널논문)

- Files in This Item
- 000225387100005.pdf
*(280.29 kB)*Download

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.