Boosting Fuzzer Efficiency: An Information Theoretic Perspective

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 35
  • Download : 0
In this paper, we take the fundamental perspective of fuzzing as a learning process. Suppose before fuzzing, we know nothing about the behaviors of a program P: What does it do? Executing the first test input, we learn how P behaves for this input. Executing the next input, we either observe the same or discover a new behavior. As such, each execution reveals "some amount"of information about P's behaviors. A classic measure of information is Shannon's entropy. Measuring entropy allows us to quantify how much is learned from each generated test input about the behaviors of the program. Within a probabilistic model of fuzzing, we show how entropy also measures fuzzer efficiency. Specifically, it measures the general rate at which the fuzzer discovers new behaviors. Intuitively, efficient fuzzers maximize information. From this information theoretic perspective, we develop ENTROPIC, an entropy-based power schedule for greybox fuzzing that assigns more energy to seeds that maximize information. We implemented ENTROPIC into the popular greybox fuzzer LIBFUZZER. Our experiments with more than 250 open-source programs (60 million LoC) demonstrate a substantially improved efficiency and confirm our hypothesis that an efficient fuzzer maximizes information. ENTROPIC has been independently evaluated and integrated into the main-line LIBFUZZER as the default power schedule. ENTROPIC now runs on more than 25,000 machines fuzzing hundreds of security-critical software systems simultaneously and continuously.
Publisher
ASSOC COMPUTING MACHINERY
Issue Date
2023-11
Language
English
Article Type
Article
Citation

COMMUNICATIONS OF THE ACM, v.66, no.11, pp.89 - 97

ISSN
0001-0782
DOI
10.1145/3611019
URI
http://hdl.handle.net/10203/314693
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0