Ultralong-Life Quinone-Based Porous Organic Polymer Cathode for High-Performance Aqueous Zinc-Ion Batteries

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 87
  • Download : 0
We synthesized and studied a redox-active quinone-basedporousorganic polymer (rPOP) and found ultralong cycle life: it is a promisingorganic cathode for aqueous zinc-ion batteries (ZIBs). It has highphysicochemical stability and enhanced intrinsic conductivity fromits fused-aromatic conjugated skeleton. rPOP's high porosityallows for efficient Zn2+ infiltration through the poresduring charging-discharging cycles and contributes to the efficientutilization of redox-active quinone units. It delivers a specificcapacity of 120 mAh g(-1) at a current density of0.1 A g(-1) with a flat and long discharge plateau,which is critically important to provide a stable voltage output.It provides ultralong cycle life at a current density of 1.0 A g(-1) for 1000 and at 2.0 A g(-1) for 30 000cycles, with initial capacity retention of 95 and 66%, respectively.The co-insertion (Zn2+ and H+) charge storagemechanism was investigated using various electrochemical measurementsand ex/in situ structural characterization techniques, and is explainedherein. These findings contribute to a better understanding of thestructure-property relationship for rPOP and open a new avenuefor new organic cathode materials for high-performance next-generationaqueous batteries.
Publisher
AMER CHEMICAL SOC
Issue Date
2023-06
Language
English
Article Type
Article
Citation

ACS APPLIED ENERGY MATERIALS, v.6, no.14, pp.7672 - 7680

ISSN
2574-0962
DOI
10.1021/acsaem.3c01163
URI
http://hdl.handle.net/10203/310953
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0