Atomic-scale observation of premelting at 2D lattice defects inside oxide crystals

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 93
  • Download : 0
No experimental observations have been reported to clarify how a melting transition proceeds inside a crystal. Here the authors demonstrate that melting is initiated at two-dimensional faults inside BaCeO3 crystals below the melting temperature in a layer-by-layer manner. Since two major criteria for melting were proposed by Lindemann and Born in the early 1900s, many simulations and observations have been carried out to elucidate the premelting phenomena largely at the crystal surfaces and grain boundaries below the bulk melting point. Although dislocations and clusters of vacancies and interstitials were predicted as possible origins to trigger the melting, experimental direct observations demonstrating the correlation of premelting with lattice defects inside a crystal remain elusive. Using atomic-column-resolved imaging with scanning transmission electron microscopy in polycrystalline BaCeO3, here we clarify the initiation of melting at two-dimensional faults inside the crystals below the melting temperature. In particular, melting in a layer-by-layer manner rather than random nucleation at the early stage was identified as a notable finding. Emphasizing the value of direct atomistic observation, our study suggests that lattice defects inside crystals should not be overlooked as preferential nucleation sites for phase transformation including melting.
Publisher
NATURE PORTFOLIO
Issue Date
2023-04
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.14, no.1

ISSN
2041-1723
DOI
10.1038/s41467-023-37977-w
URI
http://hdl.handle.net/10203/309419
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0