Real-time layer height estimation during multi-layer directed energy deposition using domain adaptive neural networks

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 126
  • Download : 0
Metal additive manufacturing (AM), such as laser direct energy deposition (DED), is gaining popularity because of its capability in manufacturing near-net-shaped complex components for various industrial applications. However, the geometry control during the DED process, especially at corners with sharp turns, remains a daunting task. To achieve geometry control, geometry estimation to identify the relationship between the process parameters and geometry attributes is vital. In this study, a real-time layer height estimation technique is developed for DED using a laser line scanner, vision camera, and domain adaptive neural networks (DaNN). An emphasis is placed on layer height estimation at sharp corners during multi-layer deposition. First, multi-layer straight-line deposition data is collected using laser line scanner and an initial layer height estimation model is constructed. Then, to efficiently achieve layer height estimation during corner deposition, an DaNN model is established using the multi-layer straight-line deposition data and the constructed initial model. The actual traverse speed at the corners is measured using a vision camera and fed into the DaNN model as one of input features. Finally, the DaNN model is updated online to further improve estimation accuracy during corner deposition. The proposed technique has been validated by DED experiments and the results show that the layer height can be estimated in 0.018 s with an average accuracy of 25.7 mu m when multiple layers with an average height of 250 mu m are deposited at corners with different angles.
Publisher
ELSEVIER
Issue Date
2023-06
Language
English
Article Type
Article
Citation

COMPUTERS IN INDUSTRY, v.148

ISSN
0166-3615
DOI
10.1016/j.compind.2023.103882
URI
http://hdl.handle.net/10203/306373
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0