Intermittent Fasting Alleviates Cognitive Impairments and Hippocampal Neuronal Loss but Enhances Astrocytosis in Mice with Subcortical Vascular Dementia

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 274
  • Download : 0
BACKGROUND: Intermittent fasting (IF) is found to exhibit neuroprotection against various insults, including ischemia; however, IF has been mainly applied before disease onset. It remains unknown whether IF implementation alleviates the long-term detrimental effects of a disease after its establishment. OBJECTIVES: To investigate the IF effects on cognitive impairments and cerebrovascular pathologies in a subcortical vascular dementia (SVaD) mouse model. METHODS: The SVaD model was developed by inducing hypoperfusion and hyperlipidemia in apoE-deficient (apoE-/-) mice. We subjected 10-week-old apoE-/- mice to bilateral common carotid artery stenosis using micro-coils after they were fed a high-fat diet (HFD; 45% energy) for 6 weeks to induce hyperlipidemia. Age-matched wild-type C57BL/6J mice received sham surgery after undergoing an identical HFD treatment. Both the SVaD model and wild-type mice either started a 1-month IF regimen (time-restricted feeding for 6 hours per day) or continued the standard diet ad libitum (6.2% fat energy) at 8 weeks post-surgery. We assessed mice weight, food intake, and outcomes in a behavioral test battery before, during, and after the IF regimen, prior to histopathological analyses (microvessel density, neuronal density, white matter damage, astrocytosis) of their brains. RESULTS: SVaD model mice on the IF regimen (SVaD-IF) exhibited higher mean recognition and spatial working memory performance compared to SVaD mice fed ad libitum (SVaD-AL; P < 0.01). Additionally, SVaD-IF mice had ∼5% higher hippocampal neuronal density in the dentate gyrus (DG) and cornu ammonis 1 regions than SVaD-AL mice (P < 0.001), which paralleled their post-IF cognitive enhancements. However, SVaD-IF mice showed an ∼50% increase in hippocampal DG astrocytosis compared to SVaD-AL mice (P < 0.05), with no significant differences in microvessel densities among the 2 groups. CONCLUSIONS: The improvements in SVaD-IF mice suggest that IF could be a potential nonpharmacological remedy for SVaD. This finding could stimulate future investigations on IF's neuroprotective potential across many neurovascular diseases. © The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition.
Publisher
OXFORD UNIV PRESS
Issue Date
2021-03
Language
English
Article Type
Article
Citation

JOURNAL OF NUTRITION, v.151, no.3, pp.722 - 730

ISSN
0022-3166
DOI
10.1093/jn/nxaa384
URI
http://hdl.handle.net/10203/282263
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0