Laser Synthesis of MOF-Derived Ni@Carbon for High-Performance Pseudocapacitors

Cited 53 time in webofscience Cited 33 time in scopus
  • Hit : 318
  • Download : 0
Although nanosizing of multiphase pseudocapacitive nanomaterials could dramatically improve their electrochemical properties, a proper way to simultaneously control both the size and the phase of the pseudocapacitive materials is still elusive. Herein, we employed a commercial CO2 laser engraver to do the transformation of a metal-organic framework (MOF-74(Ni)) into size-controlled Ni nanoparticles (4-12 nm) in porous carbon. The produced Ni@ carbon hybrid showed the best specific capacitance of 925 F/g with excellent cycling stability when the particle size is 5.5 nm. We found that the highly redoxactive alpha-Ni(OH)(2) is more predominantly formed than the less redox-active beta-Ni(OH)(2) as the particle size becomes smaller. Our results substantiate that various MOFs could be created into high-performance pseudocapacitive materials with the controlled size and phase. It is believed that the laser-based synthesis could also serve as a powerful tool for the discovery of new MOF-derived materials in the field of energy storage and catalysis.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-09
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.12, no.35, pp.39154 - 39162

ISSN
1944-8244
DOI
10.1021/acsami.0c10235
URI
http://hdl.handle.net/10203/276853
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 53 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0