RPM-Net: Robust Pixel-Level Matching Networks for Self-Supervised Video Object Segmentation

Cited 3 time in webofscience Cited 2 time in scopus
  • Hit : 299
  • Download : 0
In this paper, we introduce a self-supervised approach for video object segmentation without human labeled data.Specifically, we present Robust Pixel-level Matching Net-works (RPM-Net), a novel deep architecture that matches pixels between adjacent frames, using only color information from unlabeled videos for training. Technically, RPM-Net can be separated in two main modules. The embed-ding module first projects input images into high dimensional embedding space. Then the matching module with deformable convolution layers matches pixels between reference and target frames based on the embedding features.Unlike previous methods using deformable convolution, our matching module adopts deformable convolution to focus on similar features in spatio-temporally neighboring pixels.Our experiments show that the selective feature sampling improves the robustness to challenging problems in video object segmentation such as camera shake, fast motion, deformation, and occlusion. Also, we carry out comprehensive experiments on three public datasets (i.e., DAVIS-2017,SegTrack-v2, and Youtube-Objects) and achieve state-of-the-art performance on self-supervised video object seg-mentation. Moreover, we significantly reduce the performance gap between self-supervised and fully-supervised video object segmentation (41.0% vs. 52.5% on DAVIS-2017 validation set).
Publisher
Institute of Electrical and Electronics Engineers Inc.
Issue Date
2020-03-02
Language
English
Citation

2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020, pp.2046 - 2054

ISSN
2472-6737
DOI
10.1109/WACV45572.2020.9093294
URI
http://hdl.handle.net/10203/273321
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0