Fair Write Attribution and Allocation for Consolidated Flash Cache

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 388
  • Download : 0
Consolidating multiple workloads on a single flash-based storage device is now a common practice. We identify a new problem related to lifetime management in such settings: how should one partition device resources among consolidated workloads such that their allowed contributions to the device's wear (resulting from their writes including hidden writes due to garbage collection) may be deemed fairly assigned? When flash is used as a cache/buffer, such fairness is important because it impacts what and how much traffic from various workloads may be serviced using flash which in turn affects their performance. We first clarify why the write attribution problem (i.e., which workload contributed how many writes) is non-trivial. We then present a technique for it inspired by the Shapley value, a classical concept from cooperative game theory, and demonstrate that it is accurate, fair, and feasible. We next consider how to treat an overall “write budget” (i.e., total allowable writes during a given time period) for the device as a first-class resource worthy of explicit management. Towards this, we propose a novel write budget allocation technique. Finally, we construct a dynamic lifetime management framework for consolidated devices by putting the above elements together. Our experiments using real-world workloads demonstrate that our write allocation and attribution techniques lead to performance fairness across consolidated workloads.
Publisher
ACM SIGARCH,ACM SIGOPS,ACM SIGPLAN
Issue Date
2020-03-18
Language
English
Citation

The 25th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp.1063 - 1076

DOI
10.1145/3373376.3378502
URI
http://hdl.handle.net/10203/272444
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0