Image Reconstruction: From Sparsity to Data-Adaptive Methods and Machine Learning

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 31
  • Download : 0
The field of medical image reconstruction has seen roughly four types of methods. The first type tended to be analytical methods, such as filtered backprojection (FBP) for X-ray computed tomography (CT) and the inverse Fourier transform for magnetic resonance imaging (MRI), based on simple mathematical models for the imaging systems. These methods are typically fast, but have suboptimal properties such as poor resolution-noise tradeoff for CT. A second type is iterative reconstruction methods based on more complete models for the imaging system physics and, where appropriate, models for the sensor statistics. These iterative methods improved image quality by reducing noise and artifacts. The U.S. Food and Drug Administration (FDA)-approved methods among these have been based on relatively simple regularization models. A third type of methods has been designed to accommodate modified data acquisition methods, such as reduced sampling in MRI and CT to reduce scan time or radiation dose. These methods typically involve mathematical image models involving assumptions such as sparsity or low rank. A fourth type of methods replaces mathematically designed models of signals and systems with data-driven or adaptive models inspired by the field of machine learning. This article focuses on the two most recent trends in medical image reconstruction: methods based on sparsity or low-rank models and data-driven methods based on machine learning techniques.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2020-01
Language
English
Article Type
Article
Citation

PROCEEDINGS OF THE IEEE, v.108, no.1, pp.86 - 109

ISSN
0018-9219
DOI
10.1109/JPROC.2019.2936204
URI
http://hdl.handle.net/10203/271636
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0