Interfacial Assembly of Amphiphilic Tiles for Reconfigurable Photonic Surfaces

Cited 15 time in webofscience Cited 12 time in scopus
  • Hit : 362
  • Download : 0
Nature has created photonic structures in cells and assembled them to make photonic layers for a living. Inspired from nature, we design amphiphilic photonic tiles and assemble them at air-water interface to compose highly reconfigurable photonic layers. The photonic tiles are prepared by photolithographically defining the shape of the disc using a photocurable dispersion of repulsive particles. The tiles are further treated by directional dry etching to selectively render top and side surfaces of the discs hydrophobic. The amphiphilic photonic tiles deform the air-water interface by gravity, which causes a strong attractive force driven by capillarity. Therefore, the tiles form two-dimensional (2D) dense-packing, which rapidly adapts dynamic fluctuation and shape change of the interface, providing highly reconfigurable photonic layers. In addition, the assembly can be transferred into target solid surfaces through the Langmuir-Blodgett method to make photonic coatings. Moreover, the amphiphilic tiles can be assembled on the surface of water drops, forming a photonic shell on liquid marbles which resembles photonic structures in nature. We believe that our strategy based on a 2D tile assembly at the free interface will provide a simple yet useful means to create photonic layers on various purposes.
Publisher
AMER CHEMICAL SOC
Issue Date
2019-12
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.11, no.48, pp.45237 - 45245

ISSN
1944-8244
DOI
10.1021/acsami.9b17290
URI
http://hdl.handle.net/10203/270800
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0