Improvement of microalgae cultivation process through modeling and optimization = 모델링 및 최적화를 통한 미세조류 배양 공정의 개선

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 17
  • Download : 0
DC FieldValueLanguage
dc.contributor.advisorLee, Jay Hyung-
dc.contributor.advisor이재형-
dc.contributor.authorRyu, Kyung Hwan-
dc.date.accessioned2019-08-22T02:45:42Z-
dc.date.available2019-08-22T02:45:42Z-
dc.date.issued2019-
dc.identifier.urihttp://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=842113&flag=dissertationen_US
dc.identifier.urihttp://hdl.handle.net/10203/264884-
dc.description학위논문(박사) - 한국과학기술원 : 생명화학공학과, 2019.2,[vi, 118 p. :]-
dc.description.abstractThe third generation biomass microalgae has been received huge attention due to its non-competitiveness with food crop as well as overwhelming productivity compared to other first- and second-generation biomass. However, at present, the fuel production from microalgae has not cost competitive since there are a number of technical barriers that need to be overcome for its commercialization. In the current study, process systems engineering approaches including modeling and optimization are implemented in order to enhance the economic feasibility of the microalgal biorefinery. Cultivation process is mainly addressed in this research since it has a large portion of the biofuel production cost from microalgae. In order to use process systems engineering approaches for enhancing microalgae cultivation process, a mathematical model for microalgal behavior is developed first. The proposed model for autotrophic (Chapter 2) and heterotrophic (Chapter 4) models are developed based on a central metabolic pathway of microalgal growth and macromolecules syntheses. Along with pathway-based model structure, two different cell growth behaviors (hyperplasia and hypertrophy) are considered for establishing the model. Based on the proposed model, a performance comparison of operation strategies after their operating conditions are optimized using the previously developed model for culturing microalgae (Chapter 3). Lipid productivity is optimized, and related capital expenditures are also analyzed. In the last part, possible applications using the proposed works are introduced (Chapter 5) with the preliminary results.-
dc.languageeng-
dc.publisher한국과학기술원-
dc.subjectMicroalgae▼amicroalgae cultivation▼aautotrophic cultivation▼aheterotrophic cultivation▼amodeling▼aoptimization-
dc.subject미세조류▼a미세조류 배양▼a독립영양성장▼a종속영양성장▼a모델링▼a최적화-
dc.titleImprovement of microalgae cultivation process through modeling and optimization = 모델링 및 최적화를 통한 미세조류 배양 공정의 개선-
dc.typeThesis(Ph.D)-
dc.identifier.CNRN325007-
dc.description.department한국과학기술원 :생명화학공학과,-
dc.contributor.alternativeauthor유경환-
Appears in Collection
CBE-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0