Optimization-based identification of CO2 capture and utilization processing paths for life cycle greenhouse gas reduction and economic benefits

Cited 24 time in webofscience Cited 18 time in scopus
  • Hit : 370
  • Download : 0
This paper introduces a mathematical formulation to identify promising CO2 capture and utilization (CCU) processing paths and assess their production rates by solving an optimization problem. The problem is cast as a multi-objective one by simultaneously maximizing a net profit and life cycle greenhouse gas (GHG) reduction. Three case studies are illustrated using an exemplary CCU processing network. The results indicate the optimal solution is greatly influenced by the scale of CO2 emission source, market demand, and hydrogen availability. Moreover, with the current system of measuring the GHG reduction regarding a business-as-usual level, if the aim is to achieve a GHG reduction within a national boundary, the question of whether CCU plants producing a product of same functionality through conventional means, which the CO2-based product can replace, exists in the country can come into consideration. This systematic identification will assist decision-making regarding future R&D investment and construction of large-scale CCU plants.
Publisher
WILEY
Issue Date
2019-07
Language
English
Article Type
Article
Citation

AICHE JOURNAL, v.65, no.7

ISSN
0001-1541
DOI
10.1002/aic.16580
URI
http://hdl.handle.net/10203/264009
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 24 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0