Surface Reconstruction under the Exposure of Electric Fields Enhances the Reactivity of Donor-Doped SrTiO3

Cited 26 time in webofscience Cited 19 time in scopus
  • Hit : 340
  • Download : 0
In the present work, we show how exposure to electric fields during a high-temperature treatment can be used to manipulate surface properties of donor-doped ceramics and thus improve their reactivity. La0.1Sr0.9TiO3 (LSTO) nanoparticles, prepared by hydrothermal synthesis, were consolidated under air with and without external electric fields. Although neither approaches caused grain growth upon consolidation, the treatment under the influence of the electric field (i.e., flash sintering) remarkably enhanced the segregation of Sr on the material's surface. In addition, a high concentration of O- defects both in bulk as well as on the material surface was demonstrated by spectroscopic methods. This enhanced defect concentration along with the nanoscopic grain size of the field-consolidated materials is probably one of the triggering factors of their improved charge carrier mobility, as observed by impedance spectroscopy. The effect of such a perturbed defect structure on the reactivity of the materials was evaluated by the total oxidation of methane. For materials treated under the influence of electric fields, the catalytic reaction rate improved by a factor of 3 with respect to that of conventionally treated LSTO, along with a remarkable decrease of the activation energy. Thus, electric-field-assisted processes, usually known for their energy-saving character, can also be deemed as an attractive, forward-looking strategy for improving functional properties of ceramics.
Publisher
AMER CHEMICAL SOC
Issue Date
2019-07
Language
English
Article Type
Article
Citation

JOURNAL OF PHYSICAL CHEMISTRY C, v.123, no.27, pp.16883 - 16892

ISSN
1932-7447
DOI
10.1021/acs.jpcc.9b04620
URI
http://hdl.handle.net/10203/263995
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 26 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0